PDF(1677 KB)
PDF(1677 KB)
PDF(1677 KB)
碱含量对水泥基材料开裂敏感性的影响
Influence of Alkali Content on the Cracking Sensitivity of Cement-based Materials
选择低热硅酸盐水泥、中热硅酸盐水泥和普通硅酸盐水泥作为研究对象,利用外掺Na2SO4和K2SO4将其总碱含量调节至0.8%和1.2%,利用椭圆环法,并从干燥收缩性能、水化产物形貌、显微硬度及水化产物微观力学的角度,探究了碱对不同水泥基材料开裂敏感性的影响。结果表明:随着碱含量的提高,不同水泥基材料的开裂敏感性增加;低热硅酸盐水泥具有较高的抗裂能力,且适当地提高碱含量,有助于提高其抗裂性能;干燥收缩性并不能完全揭示碱对不同水泥基材料开裂敏感性的影响机制。碱对不同水泥基材料开裂敏感性的提高还与其微观特性有关,通过促使水化产物形貌发生转变,提高其显微硬度,降低水泥基材料浆体适应变形的能力;通过降低唯一具有胶凝特性的水化硅酸钙(C-S-H)簇间粘结力,降低水泥基材料浆体抵抗开裂的能力。
The total alkali content of low-heat Portland cement, medium-heat Portland cement, and ordinary Portland cement was adjusted to 0.8% and 1.2% by adding Na2SO4 and K2SO4 respectively. The impact of alkali on the cracking sensitivity of various cement-based materials was investigated using the elliptical ring method by analyzing drying shrinkage performance, hydration product morphology, micro hardness, and micromechanics of hydration products. Results revealed that an increase in alkali content led to higher cracking sensitivity in various cement-based materials. Low-heat Portland cement exhibited strong crack resistance, and a suitable increase in alkali content could enhance its crack resistance performance. The drying shrinkage performance alone could not fully elucidate how alkali affected the cracking sensitivity of different cement-based materials. The microscopic mechanism behind alkali’s role in enhancing the cracking sensitivity of various cement-based materials included: (1) promoting the transformation of hydration product morphology and elevating micro hardness, thereby reducing the deformation adaptability of cement-based material pastes; (2) decreasing the inter-cluster bonding strength of hydrated calcium silicate (C-S-H), a component with distinct gelling properties, thereby diminishing the crack resistance of cement-based material pastes.
水泥基材料 / 碱含量 / 开裂性能 / 收缩性能 / 显微硬度 / 微观力学
cement-based material / alkali content / cracking properties / shrinkage properties / micro hardness / micromechanics
| [1] |
于方, 唐诗, 邓春林, 等. 温度和湿度对氧化镁膨胀剂膨胀性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3221-3229.
(
|
| [2] |
王铁梦. 工程结构裂缝控制[M]. 北京: 中国建筑工业出版社, 1997.
(
|
| [3] |
程福星, 张珍杰, 周月霞, 等. 水化热调控剂与氧化镁复掺对混凝土抗裂行为的影响[J]. 硅酸盐通报, 2022, 41(12): 4273-4281.
(
|
| [4] |
|
| [5] |
|
| [6] |
理查德· W·伯罗斯. 混凝土的可见与不可见裂缝[M]. 廉慧珍, 覃维祖, 李文伟,译. 北京: 中国水利水电出版社, 2013.
(
|
| [7] |
樊启祥, 李文伟, 李新宇. 低热硅酸盐水泥大坝混凝土施工关键技术研究[J]. 水力发电学报, 2017, 36(4): 11-17.
(
|
| [8] |
|
| [9] |
李洋, 张晖, 蒋科, 等. K2O/Na2O对不同水泥基材料早期收缩及开裂的影响[J]. 长江科学院院报, 2022, 39(9): 124-130.
(
|
| [10] |
李洋, 蒋科, 张振忠, 等. 不同类型盐碱对不同水泥基材料收缩性能的影响[J]. 长江科学院院报, 2022, 39(1): 139-145, 164.
(
|
| [11] |
余睿, 王大勇, 钱雕, 等. 盐碱地区混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2020, 42(3): 71-78.
(
|
| [12] |
余睿, 王楠, 程书凯, 等. 我国典型严酷环境下混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2019, 41(5): 64-74.
(
|
| [13] |
|
| [14] |
王可良, 隋同波, 刘玲, 等. 高贝利特水泥混凝土的抗拉性能[J]. 硅酸盐学报, 2014, 42(11): 1409-1413.
(
|
| [15] |
王可良, 隋同波, 许尚杰, 等. 高贝利特水泥混凝土的断裂韧性[J]. 硅酸盐学报, 2012, 40(8): 1139-1142.
(
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
曹丰泽, 阎培渝. 活性与养护温度对氧化镁膨胀剂膨胀性能的影响[J]. 硅酸盐学报, 2017, 45(8): 1088-1095.
(
|
| [23] |
李洋. 碱对水泥基材料收缩开裂及砂岩石粉活性的影响机制[D]. 武汉: 武汉大学, 2016.
(
|
| [24] |
白春礼, 田芳, 罗克. 扫描力显微术[M]. 北京: 科学出版社, 2000.
(
|
| [25] |
李洋, 蒋科, 黄明辉, 等. Na碱和K碱对低热水泥收缩性能的影响[J]. 长江科学院院报, 2020, 37(3): 125-130.
(
|
| [26] |
陈美祝. 水泥基材料组分对早期水化及收缩开裂影响的研究[D]. 武汉: 武汉大学, 2004.
(
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
/
| 〈 |
|
〉 |