长江科学院院报 ›› 2023, Vol. 40 ›› Issue (11): 125-130.DOI: 10.11988/ckyyb.20230062

• 岩土工程 • 上一篇    下一篇

基于RS-SSA-RF的帷幕灌浆施工质量预测

宋铭明1, 刘宗显2,3   

  1. 1.南充职业技术学院 土木与建筑工程系,四川 南充 637001;
    2.四川大学 水利水电学院,成都 610065;
    3.雅砻江流域水电开发有限公司,成都 610051
  • 收稿日期:2023-01-19 修回日期:2023-04-25 出版日期:2023-11-01 发布日期:2023-11-09
  • 通讯作者: 刘宗显(1995-),男,陕西安康人,工程师,硕士,研究方向为水电工程智能建造。E-mail:lzongxian@tju.edu.cn
  • 作者简介:宋铭明(1983-),女,四川遂宁人,讲师,研究方向为水利水电建筑工程。E-mail:2781064244@qq.com
  • 基金资助:
    雅砻江流域水电开发有限公司科研项目(LHKG2022KY116YS)

Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests

SONG Ming-ming1, LIU Zong-xian2,3   

  1. 1. Department of Civil and Architectural Engineering, Nanchong Vocational and Technical College, Nanchong 637001,China;
    2. College of Water Resource and Hydropower,Sichuan University,Chengdu 610065, China;
    3. Yalong River Hydropower Development Co., Ltd., Chengdu 610051, China
  • Received:2023-01-19 Revised:2023-04-25 Online:2023-11-01 Published:2023-11-09

摘要: 灌浆施工质量预测作为施工过程控制的重要抓手,为寻求具有高精度及低耗时性的灌浆施工质量预测方法,建立了基于粗糙集理论和樽海鞘群算法优化的随机森林的灌浆施工质量预测模型。通过工程应用,对帷幕灌浆施工质量进行了预测分析,并与支持向量机、BP神经网络对比,结果显示本文所提出的方法耗时仅为219.313 s,预测值与实测值的Pearson相关系数为0.936、平均绝对误差为0.140、均方误差为0.037、平均绝对百分比误差为0.059,与实际值具有一致性。研究表明,所建立的模型可为灌浆施工质量控制提供参考。

关键词: 帷幕灌浆, 粗糙集理论, 樽海鞘群算法, 随机森林, 施工质量, 回归预测

Abstract: To develop a grouting construction quality prediction model that is both highly accurate and efficient, we established a curtain grouting construction quality model based on an integration of the Rough Set Theory, Salp Swarm Algorithm, and Random Forests. The model is specifically designed for practical application in engineering projects. Comparisons were made with the SVM and BP neural network models, revealing that the proposed model achieved superior performance. Specifically, the proposed model required a mere 219.313 s for computation, and exhibited a Pearson correlation coefficient of 0.936 between predicted and measured values. Furthermore, the average absolute error, mean square error, and average absolute percentage error were measured at 0.140, 0.037, and 0.059, respectively. These findings highlight the potential of the proposed model to serve as a valuable reference for grouting construction quality control.

Key words: curtain grouting, rough set theory, salp swarm algorithm, random forest, construction quality, regression prediction

中图分类号: