长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8): 57-63.DOI: 10.11988/ckyyb.20220242

• 水环境与水生态 • 上一篇    下一篇

基于改进果蝇算法的LSTM在水质预测中的应用

郭利进1,2, 许瑞伟1,2   

  1. 1.天津工业大学 控制科学与工程学院,天津 300387;
    2.天津市电气装备智能控制重点实验室, 天津 300387
  • 修回日期:2022-10-07 出版日期:2023-08-01 发布日期:2023-08-09
  • 作者简介:郭利进(1970-),男,湖北黄冈人,教授,博士,硕士生导师,研究方向为过程参数的检测与控制。E-mail:Doctor_guo@tiangong.edu.cn

Application of LSTM Model Combining Improved Fruit-Fly Algorithm after Seasonal-Trend Decomposition using LOESS to Water Quality Prediction

GUO Li-jin1,2, XU Rui-wei1,2   

  1. 1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
  • Revised:2022-10-07 Published:2023-08-01 Online:2023-08-09

摘要: 水质环境的实时变化和内部耦合导致难以实现水质高效准确的预测。为挖掘水质时间序列中的更多信息,同时提高预测模型的精度,提出一种溶解氧组合预测模型。首先将水质数据去耦合,进行时间序列分解,然后将分解后趋势分量、周期分量和余项分量输入到长短时神经网络模型(LSTM)中进行预测,再针对LSTM网络初始化参数对预测性能的影响提出基于高斯函数的果蝇算法进行优化,最后将各分量的预测值重构为溶解氧浓度的预测值。以海河某3个河流断面的水质数据进行仿真检验,结果表明混合模型对3个站点溶解氧浓度预测效果好,误差小,泛化性强。

关键词: 水质预测, 时间序列分解, 果蝇算法, 长短时神经网络, 溶解氧

Abstract: Real-time variations in water quality environment and the internal coupling pose challenges to predicting water quality efficiently and accurately. To extract further information from the time series data and enhance the accuracy of prediction models, we propose a novel combined prediction model for Dissolved Oxygen (DO). To begin with, the water quality data is decomposed using the Seasonal and Trend decomposition using LOESS (STL) technique. Subsequently, the obtained seasonal component, trend component, and residual component are fed into the Long Short-Term Memory network model (LSTM) for prediction. In order to address the impact of LSTM network initialization parameters on prediction performance, we introduce an optimization approach based on the Fruit fly algorithm utilizing Gaussian function. Finally, the predicted values of each component are reconstructed to the DO prediction values. To validate the effectiveness of the proposed model, we conduct simulation tests utilizing water quality data from three sections of Haihe River. Results demonstrate that the combined model exhibits a favorable prediction effect on the DO concentration of the three stations, characterized by minimal errors and strong generalizability.

Key words: water quality prediction, STL, fruit-fly algorithm, LSTM, dissolved oxygen

中图分类号: