结合大岗山水电站地下厂房洞室群施工期分层开挖特点,提出考虑松动圈参数弱化效应的反演基本模型。引入GA-BP算法,基于正交试验设计与FLAC3D差分程序获得神经网络学习样本及测试样本,建立起围岩力学参数与位移之间的高度非线性映射关系。根据现场实测位移和网络映射位移,建立目标函数,采用遗传算法在岩体参数经验取值范围内,搜索使目标函数取得最优解的参数组合,以获取反演的最优岩体参数。最后利用获取的岩体参数进行正演分析并进行位移的后验差法检验,结论表明了该方法的适用性,其可用于反馈并指导地下工程设计与施工。
Abstract
A basic back analysis model is proposed in consideration of the weakening effect of loose zone parameters for Dagangshan underground powerhouse caverns excavated in layers. The learning and testing samples of neural network were acquired by introducing GA BP algorithm based on orthogonal experimental design and FLAC 3D differential procedures. Hence a highly nonlinear mapping relation between the rock’s mechanical parameters and the displacements was established. According to field measured displacement and network mapping displacement, the objective function was obtained. By using genetic algorithm, the optimum rockmass parameters were obtained by searching parameter combinations which can make the network mapping displacement and the field measured displacement satisfy the optimal solution of the objective function within the range of empirical values. Finally, forward analysis on the obtained rockmass parameters and backward error detection on the displacements were carried out. Results show that the method is suitable for the design and construction of underground works.
关键词
岩石力学 /
岩体参数 /
松动圈 /
地下洞室群 /
参数弱化效应 /
GA-BP算法 /
大岗山水电站
Key words
rock mechanics /
rockmass parameters /
loose zone /
underground caverns /
parameter’s weakening effect /
GA BP algorithm /
Dagangshan hydropower station
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘志宝,宁海龙,张海涛. 岩土工程中位移反分析方法及其进展[J]. 路基工程,2006,(5): 7-10.(LIU Zhi-bao, NING Hai-long, ZHANG Hai-tao. Displacement Back-Analysis Methods and Progress in Geotechnical Engineering[J]. Subgrade Engineering, 2006,(5):7-10.(in Chinese)
[2] 杨志法,熊顺成,王存玉. 关于位移反分析的某些考虑[J]. 岩石力学与工程学报,1995, 14(1):11-16.(YANG Zhi-fa, XIONG Shun-cheng, WANG Cun-yu. Some Considerations of the Back-Analysis on Displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(1):11-16.(in Chinese)
[3] 江 权,冯夏庭,苏国韶,等. 基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J]. 岩石力学与工程学报,2007, 26(增1):2654-2662.(JIANG Quan, FENG Xia-ting, SU Guo-shao, et al. Intelligent Back Analysis of Rock Mass Parameters for Large Underground Caverns under High Earth Stress Based on EDZ and Increment Displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Sup.1):2654-2662.(in Chinese)
[4] 李 宁,段小强,陈方方,等. 围岩松动圈的弹塑性位移反分析方法探索[J]. 岩石力学与工程学报,2006, 25(7):1304-1308.(LI Ning, DUAN Xiao-qiang, CHEN Fang-fang, et al. A Back Analysis Method for Elasto-plastic Displacement of Broken Rock Zone Around Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7):1304-1308.(in Chinese)
[5] 陈秋红,李仲奎,张志增. 松动圈分区模型及其在地下工程反馈分析中的应用[J]. 岩石力学与工程学报,2010, 29(增1):3216-3220.(CHEN Qiu-hong, LI Zhong-kui, ZHANG Zhi-zeng. Loosening Zonal Model and Its Application to Back Analysis of Underground Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup.1):3216-3220.(in Chinese)
[6] 李鸿博. 考虑松动圈的位移反分析在隧道工程中的应用[D].上海:同济大学,2006.(LI Hong-bo. Application of Displacement Back Analysis to Tunnel Engineering in Consideration of Loose Zone [D]. Shanghai: Tongji University, 2006.(in Chinese)
[7] 黄 戡,刘宝琛,彭建国,等. 基于遗传算法和神经网络的隧道围岩位移智能反分析[J]. 中南大学学报(自然科学版),2011, 42(1):213-219.(HUANG Kan, LIU Bao-chen, PENG Jian-guo, et al. Intelligent Back-Analysis of Tunnel Surrounding Rock Displacement Based on Genetic Algorithm and Neural Network[J]. Journal of Central South University (Science and Technology),2011,42(1):213-219.(in Chinese)
[8] 王树栋. 基于进化神经元算法的堡镇隧道软弱围岩施工弹塑性智能位移反分析[J]. 北京交通大学学报,2010, 34(3):112-116.(WANG Shu-dong. Elasto-Plastic Intelligence Displacement Back Analysis of Soft Rock Construction in Baozhen Tunnel Based on Evolutionary-Neuron Algorithm[J]. Journal of Beijing Jiaotong University. 2010, 34(3):112-116.(in Chinese)
[9] 冯夏庭,张治强,杨成祥,等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报, 1999, 18(5):529-533.(FENG Xia-ting, ZHANG Zhi-qiang, YANG Cheng-xiang, et al. Study on Genetic Neural Network Method of Displacement Back Analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5):529-533.(in Chinese)
[10]关永平,宋 建,王述红,等. 基于GA-BP算法的隧道围岩力学参数反分析[J]. 东北大学学报(自然科学版),2012, 33(2):276-278.(GUAN Yong-ping, SONG Jian, WANG Shu-hong, et al. Back Analysis of Mechanical Parameters of Surrounding Rocks Based on GA-BP Algorithm[J]. Journal of Northeastern University (Natural Science), 2012,33(2):276-278.(in Chinese)
[11]张建海,胡著秀,杨永涛,等. 地下厂房围岩松动圈声波拟合及监测反馈分析[J]. 岩石力学与工程学报,2011, 30(6):1191-1197.(ZHANG Jian-hai, HU Zhu-xiu, YANG Yong-tao, et al. Acoustic Velocity Fitting and Monitoring Feedback Analysis of Surrounding Rock Loosing Zone in Underground Powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1191-1197.(in Chinese)
[12]邹红英,肖 明. 地下洞室开挖松动圈评估方法研究[J]. 岩石力学与工程学报,2010, 29(3):513-519.(ZOU Hong-ying, XIAO Ming. Study of Methodology for Assessment of Excavation Disturbed Zone of Underground Caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3):513-519.(in Chinese)
[13]DL/T5099—2011. 水工建筑物地下开挖工程施工技术规范[S]. 北京: 水利电力出版社, 1999.(DL/T5099—2011. The Professional Standards Compilation Group of People’s Republic of China. Technical Specifications of Underground Excavation of Hydraulic Engineering[S]. Beijing: China Water Power Press, 1999.(in Chinese)
[14]方开泰. 均匀设计与均匀设计表[M]. 北京: 科学出版社, 1994.(FANG Kai-tai. Uniformity Design and Design Tables[M]. Beijing: Science Press, 1994.(in Chinese)
[15]邓聚龙. 灰色系统的GM模型[M]. 武汉: 华中理工大学出版社, 1986.(DENG Ju-long. GM Model of Grey System[M]. Wuhan: Huazhong University of Science and Technology Press, 1986.(in Chinese)