长江科学院院报 ›› 2024, Vol. 41 ›› Issue (11): 7-14.DOI: 10.11988/ckyyb.20230686

• 水资源 • 上一篇    下一篇

气候变化下多重不确定性对流域水文模拟的影响

姜思羽1(), 周帅2(), 吴辉明3   

  1. 1 中国地质大学 环境学院,武汉 430074
    2 河北工程大学 水利水电学院, 河北 邯郸 056038
    3 广州珠科院工程勘察设计有限公司,广州 510610
  • 收稿日期:2023-06-21 修回日期:2023-10-07 出版日期:2024-11-01 发布日期:2024-11-26
  • 通讯作者: 周 帅(1990-),男,安徽宿州人,讲师,博士,研究方向为水资源系统工程。E-mail:zhoushuai@hebeu.edu.cn
  • 作者简介:

    姜思羽(1997-),女,广西玉林人,硕士,研究方向为水文地质学、地下水污染与防治。E-mail:

  • 基金资助:
    河北省自然科学基金项目(E2023402016)

Influence of Multiple Uncertainties on Watershed Hydrological Simulation under Climate Change

JIANG Si-yu1(), ZHOU Shuai2(), WU Hui-ming3   

  1. 1 School of Environment, China University of Geosciences, Wuhan 430074, China
    2 College of Water Resources and Hydropower, Hebei University of Engineering, Handan 056038, China
    3 Guangzhou Zhukeyuan Engineering Survey and Design Co., Ltd., Guangzhou 510610, China
  • Received:2023-06-21 Revised:2023-10-07 Published:2024-11-01 Online:2024-11-26

摘要:

水文预报精度优劣与建模过程中的多源不确定性息息相关,且其交互效应将进一步增大预测不确定性。为了降低其影响,以泾河流域为例,利用拉丁超立方抽样和随机OAT方法(Latin Hypercube,LH-OAT),高效识别出SIMHYD水文模型中“有效”参数组;利用统计降尺度模型(Statistical Downscaling Model, SDSM)得到的气象要素驱动水文模型,揭示了多重不确定性对流域径流、土壤含水量模拟的影响;最后,采用方差分析方法动态量化评估了各源不确定性及其交互作用对水文预测不确定性的相对贡献。结果表明:流域年径流量呈逐年递减趋势;“有效”参数组可较好地重现流域水文过程,但其不确定性对模拟结果的不确定性影响明显。参数、气候模式和气候变化情景不确定性对月尺度径流和土壤含水量预测不确定性贡献占比分别为30%、40%、10%和75%、15%、5%;同时,汛前和汛后多重不确定性之间的交互作用明显增大。研究结果对于降低水文预测不确定性、提高水文模拟精度尤为重要。

关键词: 多重不确定性, 气候变化, 水文模型, 交互作用, 黄河流域

Abstract:

The accuracy of hydrological forecasting is closely related to the multi-source uncertainty in the modeling process, and its interactive effects will further increase the prediction uncertainty. To reduce its impact, the Jinghe River basin was taken as the research object and the global sensitivity analysis method (LH-OAT) was used to effectively obtain the “available” parameter set of SIMHYD Hydrological model. Secondly, the impact of multiple uncertainties on runoff and soil moisture simulation was explored based on the hydrological model driven by meteorological elements obtained from the Statistical Downscaling Model (SDSM). Finally, the analysis of variance (ANOVA) method was used to dynamically quantify the relative contribution of various sources of uncertainty and their interactions to hydrological prediction uncertainty. The results show that the annual average runoff of the Jinghe River basin has a significant decreasing trend year by year. The “available” parameter group can better reproduce the hydrological process of the watershed, but its uncertainty has a significant impact on the uncertainty of the simulation results. The relative contributions of parameter, climate model, and climate change scenario uncertainties to monthly scale runoff are 30%, 40%, and 10%, respectively, and 75%, 15%, and 5%, respectively to soil water content. The interaction between multiple uncertainties before and after the flood has significantly increased. The research results are particularly important for reducing the uncertainty of hydrological prediction and improving the accuracy of hydrological simulation.

Key words: multiple uncertainties, climate change, hydrologic model, interaction effect, Yellow River Basin

中图分类号: