长江科学院院报 ›› 2020, Vol. 37 ›› Issue (11): 59-63.DOI: 10.11988/ckyyb.20191018

• 工程安全与灾害防治 • 上一篇    下一篇

大坝变形的小波-云预测模型

何杨杨1,2, 苏怀智1,2   

  1. 1.河海大学 水文水资源与水利工程科学国家重点实验室,南京 210098;
    2.河海大学 水利水电学院,南京 210098
  • 收稿日期:2019-08-19 修回日期:2019-12-09 出版日期:2020-11-01 发布日期:2020-12-02
  • 通讯作者: 苏怀智(1973-),男,内蒙古鄂尔多斯人,教授,博士,主要从事涉水工程安全防控与提能延寿研究。E-mail: su_huaizhi@hhu.edu.cn
  • 作者简介:何杨杨(1996-),女,江苏南通人,硕士研究生,主要从事水工结构与大坝安全监测研究。E-mail:15150688655@163.com
  • 基金资助:
    国家自然科学基金项目(51979093);国家重点研发计划课题(2018YFC0407101,2017YFC0804607)

Wavelet-Cloud Prediction Model for Dam Deformation

HE Yang-yang1,2, SU Huai-zhi1,2   

  1. 1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,Nanjing 210098, China;
    2. College of Water Conservancy and Hydropower Engineering, Hohai University,Nanjing 210098, China
  • Received:2019-08-19 Revised:2019-12-09 Published:2020-11-01 Online:2020-12-02

摘要: 大坝变形原始观测信号可视为真实信号与白噪声的叠加。为实现对大坝变形的有效预测,将小波去噪与云模型相结合,提出一种大坝变形时间序列分析的小波-云预测模型。首先利用小波多分辨分析特点,分解出大坝原始变形时间序列中的真实信号项及噪声项;其次,创建变形预测的云模型语言规则,利用最大隶属度原则,确定被预测变形所属的规则前件及相应的历史云,结合历史云与被预测变形所在的当前云生成预测云;最后,以对某实际大坝进行变形预测为例,比较了传统统计模型、云模型和小波-云模型的预测精度。结果表明:所提出的小波-云预测模型能够提供更准确的预测结果,能够为大坝的安全运行提供有效依据。

关键词: 大坝变形预测, 时间序列分析, 小波分析, 云模型, 去噪

Abstract: The original observation signal of dam deformation can be regarded as the superposition of real signal and white noise. A wavelet-cloud prediction model for dam deformation time series analysis is proposed in the present paper by combining wavelet denoising and cloud model to effectively predict dam deformation. Firstly, the multi-resolution analysis of wavelet is used to decompose the original signal into the real signal item and the noise item in the original deformation time series of the dam. Secondly, the cloud model language rules for deformation prediction are created; the principle of maximum membership degree is used to determine the rule predecessor to which the predicted deformation belongs and the corresponding historical cloud which is further combined with the current cloud to generate predictive cloud. The prediction accuracy among traditional statistical model, cloud model, and the proposed wavelet-cloud model is compared with the deformation prediction of a dam as an example. Result demonstrates that the proposed wavelet-cloud prediction model provides more accurate prediction results, offering an effective basis for the safe operation of dam.

Key words: dam deformation prediction, time series analysis, wavelet analysis, cloud model, denoising

中图分类号: