震后断层区岩体裂隙的愈合对于地震水力响应研究具有重要的作用。为研究裂隙岩体愈合对深部断层区渗透率时空演化规律的影响,在离散裂隙网络耦合模型基础上加入裂隙蠕变效应,建立裂隙岩体流固耦合时空演化模型,并利用COMSOL Multiphysics对建立的耦合方程进行求解。结果表明,封堵之前,常规的耦合渗流达到稳定状态,由于具有完整的通道,任意时刻的流固耦合并不能改变流体的压力。随着封堵发生,在蠕变效应下,裂隙开度减小,单元体渗透率降低,流体压力增大。该研究成果为震后破裂带岩体的愈合机理及渗透率演化分析提供了理论依据。
Abstract
Crackhealing of rock mass in fault zones after earthquake plays an important role for hydraulic response for the earthquake. In order to study the healing effect of fractured rock mass on the spatiotemporal evolution law of permeability in deep fault zones, we introduced creep effect of fracture to the network coupled model of discrete fractures. On this basis, a new spatiotemporal evolution model for fractured rock mass based on fluidsolid coupling was built, and the coupled equations were solved with the software of COMSOL Multiphysics. The results show that, before sealing, common coupled seepage achieves a steady state. Due to complete seepage channel, the fluidsolid interaction can’t change fluid pressure at any given time. As sealing happens, under the influence of creep, fracture aperture and permeability of unit body decrease, but fluid pressure increases. The conclusions can provide a theoretical basis for healing mechanism of rock mass and evolution analysis of permeability in fractured zones after earthquake.
关键词
裂隙岩体 /
蠕变效应 /
渗透率 /
裂隙开度 /
流固耦合
Key words
fractured rock mass /
creep effect /
permeability;fracture aperture;fluidsolid coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]RICE J R. Heating and Weakening of Faults During Earthquake Slip [J]. Journal of Geophysical Research, 2006, 111(B05):311.
[2] REMPEL A W, RICE J R. Thermal Pressurization and Onset of Melting in Fault Zones [J]. Journal of Geophysical Research, 2006, 111(B09):535-540.
[3] XUE L, LI H B, BRODSKY E E,et al. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone [J]. Science, 2013, 340: 1555-1559.
[4] MONTGOMERY D R, MANGA M. StreamFlow and Water Well Responses to Earthquakes [J]. Science, 2003 , 300: 2047-2049.
[5] WANG C Y, DREGER D S, WANG C H, et al. Field Relations among Coseismic Ground Motion, Water Level Change and Liquefaction for the 1999 Chi-Chi (Mw=7.5) Earthquake, Taiwan [J]. Geophysical Research Letters, 2003, 30(17): 1890-1893.
[6] WANG C Y, CHIA Y. Mechanism of Water Level Changes During Earthquakes: Near Field versus Intermediate Field[J]. Geophysical Research Letters, 2008 ,35(12) : 86-109.
[7] LIU W Q, MANGA M. Changes in Permeability Caused by Dynamic Stresses in Fractured Sandstone [J]. Geophysical Research Letters, 2009, 36(20): 146-158.
[8] 朱 立,刘卫群,王甘林. 振动对充填裂隙渗透率影响的实验研究[J]. 实验力学, 2012, 27 (2): 201-206.(ZHU Li, LIU Weiqun, WANG GANlin. Experimental Study the Influence of Vibration on the Permeability of Fractured Sandstone with Sediment Particles [J]. Journal of Experimental Mechanics, 2012, 27 (2): 201-206. (in Chinese))
[9] GEBALLE Z M, WANG C Y,MANGA M. A Permeabilitychange Model for Waterlevel Changes Triggered by Teleseismic Waves [J]. Geofluids, 2011, 11(3): 302-308.
[10]BRODSKY EE, ROELOFFS E, WOODCOCK D, et al. A Mechanism for Sustained Groundwater Pressure Changes Induced by Distant Earthquakes[J]. Journal of Geophysical Research, 2003, 108 (B8): 2390-2392.
[11]ELKHOURY J E, BRODSKY E E, AGNEW D C. Seismic Waves Increase Permeability [J]. Nature, 2006,441: 1135-1138.
[12]徐卫亚,杨圣奇. 节理岩石剪切流变特性试验与模型研究[J]. 岩石力学与工程学报, 2005, 24(增2): 5536-5542.(XU Weiya, YANG Shengqi. Experiment and Modeling Investigation on Shear Rheological Property of Joint Rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (Sup.2): 5536-5542.(in Chinese))
[13]杨松林,张建民,黄启平.节理岩体蠕变特性研究[J].岩土力学, 2004, 25(8):1225-1228.(YANG Songlin, ZHANG Jianmin, HUANG Qipin. Analysis of Creep Model of Jointed Rock [J]. Rock and Soil Mechanics, 2004, 25(8):1225-1228.(in Chinese))
[14]熊良霄,杨林德. 考虑节理面法向蠕变的节理岩体蠕变模型[J].中南大学学报(自然科学版), 2009, 40(3):814-821. (XIONG Liangxiao, YANG Linde. Creep Model for Rock Mass Considering Normal Creep of Rock Joint Plane [J]. Journal of Central South University (Science and Technology), 2009, 40(3): 814-821.(in Chinese))
[15]HUANG T H. Elastic Moduli for Fractured Rock Mass [J]. Rock Mechanics & Rock Engineering, 1995, 28(3): 135-144.
[16]WU Y, LIU J S, ELSWORTH D, et al. Dual Poroelastic Response of Coal Seam to CO2 Injection [J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668-678.
[17]DETOURNAY E, CHENG A H D. Fundamentals of Poroelasticity[M]∥ FAIRHURST C. Comprehensive Rock Engineering : Principles, Practice and Projects: Vol. 2. Oxford: Pergamon Press, 1993: 113-171.
基金
国家自然科学基金项目(41074040);国家重点基础研究发展计划(973)项目(2009CB219605)