长江科学院院报 ›› 2015, Vol. 32 ›› Issue (11): 110-114.

• 水工结构与材料 • 上一篇    下一篇

基于相关函数的泄洪闸闸墩结构振动响应多测点融合研究

徐旺敏1,张宇驰2,刘伍根1,刘世立2   

  1. 1.上饶市水利科学研究所,江西 上饶 334000;
    2. 南昌大学 建筑工程学院,南昌 330031
  • 收稿日期:2014-05-19 修回日期:2014-06-12 出版日期:2015-11-20 发布日期:2015-11-05
  • 作者简介:徐旺敏(1963-),男,江西上饶人,高级工程师,主要从事水利水电工程领域的科研工作,(电话)18979310668(电子信箱) srsksxwm@126.com。
  • 基金资助:
    国家自然科学基金项目(51269019,51469015);广东省水利科技剑新基金上(2014-08)

Fusion of Vibration Signals from Multiple Observation Points of Flood Discharge Sluice Pier Based on Correlation Function

XU Wang min1,ZHANG Yu chi2,LIU Wu gen1, LIU Shi li2   

  1. 1.Shangrao Municipal Hydraulic Scientific Research Institute,Shangrao 334000,China;
    2.School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
  • Received:2014-05-19 Revised:2014-06-12 Published:2015-11-20 Online:2015-11-05

摘要: 以信州水利枢纽泄洪闸闸墩为工程背景,通过基于泄流激励下闸墩动力特性测试,得到多个测点的振动信号。针对单个测点信号信噪比不高、频率成分不全的缺点,基于相关函数融合算法,将多个测点的振动信号融合为一个能够准确、全面反映结构整体振动特性的振动信号,实现多测点振动信号的数据融合。通过对融合前后信号频率识别结果对比表明基于相关函数的多测点融合算法具有其可行性,能够很好地挖掘出淹没在噪声中的结构有效频率,为识别结构的模态参数提供了重要依据。

关键词: 闸墩, 多测点, 信息融合, 相关函数, 振动响应

Abstract: With the sluice pier of Xinzhou hydraulic project as an engineering background, the vibration signals of several observation points were acquired through pier dynamic characteristics test. In light of low signaltonoise ratio and incomplete frequency component of a single measurement point, the vibration signals from several measuring points were fused into one signal through correlation function fusion algorithm. This signal could reflect the vibration signal of the overall structure accurately and fully. By comparing the results of signal frequency identification before and after the fusion, we conclude that the multipoint fusion algorithm based on correlation function is feasible. Effective frequency of the structure submerged in noise could be excavated very well. Finally, It povides important basis for identifying modal parameters of the structure.

Key words: sluice pier, multiple observation points, information fusion, correlation function, vibration response

中图分类号: