双断层地下洞室稳定性快速分析方法研究

刘乃飞,李宁,菅强

长江科学院院报 ›› 2014, Vol. 31 ›› Issue (11) : 125-130.

PDF(2109 KB)
PDF(2109 KB)
长江科学院院报 ›› 2014, Vol. 31 ›› Issue (11) : 125-130. DOI: 10.3969/j.issn.1001-5485.2014.11.0252014,31(11):125-130
地下洞室围岩稳定

双断层地下洞室稳定性快速分析方法研究

  • 刘乃飞1,李宁1,2,菅强1,3
作者信息 +

Rapid Analysis Method for the Stability of Underground Chambers with Double Faults

  • LI Ning1,2, LIU Nai-fei1, JIAN Qiang1,3
Author information +
文章历史 +

摘要

针对当前商业软件分析速度难以满足信息化施工时效性的这一关键难题,结合课题组多年的研究成果,提出了一种全新的解决思路。首先概化出对隧洞稳定性影响较大的4大类15个参数,并拟定系统的数值试验方案;然后建立数值分析结果和各影响因素的关系数据库,并以此为样本借助BP神经网络技术构建双断层洞室稳定性快速分析系统;最后用该系统对拉西瓦水电站厂房稳定性进行了分析。洞周变形误差小于20%,满足工程要求,表明该系统具有较好的可靠性。

Abstract

The analysis speed of commercial softwares cannot meet the timeliness requirements of information construction. In view of this, an entirely new idea is proposed in this paper. Firstly, 4 groups including 15 parameters which have significant impacts on the stability of tunnel are generalized and test plan is drawn up. Subsequently the relational database of numerical analysis results and the main influences is established, and the rapid analysis and evaluation system for underground chamber with double faults is built up with the help of BP neural network. This system is employed to analyze the stability of the powerhouse of Laxiwa hydropower station. The error of peripheral deformation is less than 20%, which meets the engineering requirements and shows a good reliability of this system.

关键词

信息化施工 / 双断层洞室 / BP神经网络技术 / 快速分析系统

Key words

information construction / chamber with double faults / BP neural network / rapid analysis system

引用本文

导出引用
刘乃飞,李宁,菅强. 双断层地下洞室稳定性快速分析方法研究[J]. 长江科学院院报. 2014, 31(11): 125-130 https://doi.org/10.3969/j.issn.1001-5485.2014.11.0252014,31(11):125-130
LI Ning, LIU Nai-fei, JIAN Qiang. Rapid Analysis Method for the Stability of Underground Chambers with Double Faults[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(11): 125-130 https://doi.org/10.3969/j.issn.1001-5485.2014.11.0252014,31(11):125-130
中图分类号: TU45   

参考文献

[1] 曹国金, 姜弘道. 信息化施工技术在地下工程中的应用.岩土力学,2002, 23(6): 795-799. (CAO Guo-jin, JIANG Hong-dao. Application of Information Technique to Construction of Underground Engineering . Rock and Soil Mechanics, 2002, 23(6): 795-799. (in Chinese))
[2 张 穗, 谭德宝, 崔远来, 等. 空问信息技术在灌区信息化中的应用探讨.长江科学院院报,2010, 27(1): 52-56. (ZHANG Shui, TAN De-bao, CUI Yuan-lai, et al. Discussion of Spatial Information Technology Application in Irrigation District Informationization . Journal of Yangtze River Scientific Research Institute, 2010, 27(1): 52-56. (in Chinese))
[3] 陈向东, 杨茂忠. 信息化施工及其应用术. 北京工业大学学报,2001, 27(1): 57-60. (CHEN Xiang-dong, YANG Mao-zhong. Information Construction and Its Application . Journal of Beijing Polytechnic University, 2001, 27(1): 57-60. (in Chinese))
[4] 李 宁, SWOBODA G . 当前岩石力学数值方法的几点思考. 岩石力学与工程学报,1997, 16(5): 502-505. (LI Ning, SWOBODA G. Several Thoughts of Numerical Analysis Method about Rock Mechanics . Chinese Journal of Rock Mechanics and Engineering, 1997, 16(5): 502-505. (in Chinese))
[5] 王任超, 周洪利. 导流隧洞施工工期的模糊类比预测与评价方法研究.长江科学院院报,2013, 30(1): 80-85. (WANG Ren-chao, ZHOU Hong-li. Fuzzy Analogy Prediction and Evaluation of Construction Period of Diversion Tunnel . Journal of Yangtze River Scientific Research Institute, 2013, 30(1): 80-85. (in Chinese))
[6] 汪安全, 艾 凯, 尹健民. 巴贡水电站引水洞地应力测量及分析.长江科学院院报,2013, 30(6): 72-75. (WANG An-quan, AI Kai, YIN Jian-min. In-situ Geostress Measurement and Analysis for the Power Tunnel of Bakun Hydroelectric Station . Journal of Yangtze River Scientific Research Institute, 2013, 30(6): 72-75. (in Chinese))
[7] 冯夏庭, 周 辉, 李邵军, 等. 复杂条件下岩石工程安全性的智能分析评估和时空预测系统.岩石力学与工程学报,2008, 27(9): 1741-1756. (FENG Xia-ting, ZHOU Hui, LI Shao-jun, et al. System of Intelligent Evaluation and Prediction in Space-time for Safety of Rock Engineering under Hazardous Environment . Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1741-1756. (in Chinese))
[8] 冯夏庭, 江 全, 向天兵, 等. 大型洞室群智能动态设计方法及其实践.岩石力学与工程学报,2011, 30(3): 433-448. (FENG Xia-ting, JIANG Quan, XIANG Tian-bing, et al. Intelligent and Dynamic Design Method of Large Cavern Group and Its Practice . Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 433-448. (in Chinese))
[9] 李 宁, 罗俊忠, 常 斌, 等. 硐室设计与分析的新思路与新方法.岩石力学与工程学报,2006, 25(10): 2155-2159. (LI Ning, LUO Jun-zhong, CHANG Bin, et al. New Method for Design and Analysis of Underground Caverns . Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2155-2159. (in Chinese))
[10] 文辉辉, 尹健民, 秦志光, 等. BP神经网络在隧道围岩力学参数反演中的应用.长江科学院院报,2013, 30(2): 47-51. (WEN Hui-hui, YIN Jian-min, QIN Zhi-guang, et al. Application of BP Neural Network to the Back Analysis of Mechanical Parameters of Tunnel Surrounding Rock . Journal of Yangtze River Scientific Research Institute, 2013, 30(2): 47-51. (in Chinese))
[11] 崔东文, 郭 荣. 基于概率神经网络的文山州水资源配置合理性评价分析.长江科学院院报,2012, 29(10): 57-62. (CUI Dong-wen, GUO Rong. Evaluation of Rational Water Allocation Based on Probabilistic Neural Network:Case Study of Wenshan Prefecture . Journal of Yangtze River Scientific Research Institute, 2012, 29(10): 57-62. (in Chinese))
[12] 孙宏超. 邻近断层洞室围岩稳定性仿真试验研究.西安:西安理工大学,2008. (SUN Hong-chao. Numerical Test on Stability of Surrounding Rock Mass Controlled by Faults in Tunnel Projects . Xi’an: Xi’an University of Technology, 2008. (in Chinese))
[13] 菅 强. 城门洞型隧道围岩变形场分布规律分析与预测模型研究.西安:西安理工大学,2010. (JIAN Qiang. Analysis and Prediction Model for the Distribution of Deformation Field of the Rock Mass of Gate-shaped Tunnels . Xi’an: Xi’an University of Technology, 2010. (in Chinese))
[14] 常 斌, 李 宁, 马玉扩. 神经网络方法在洞室施工期应力及变形预测中的应用及其改进.岩石力学与工程学报,2004, 23(7): 1132-1135. (CHANG Bin, LI Ning, MA Yu-kuo. Improvement and Application of ANN Method in Stress and Deformation Predictions During Tunnel Excavation . Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1132-1135. (in Chinese))
[15] 刘院院. 城门洞型隧道喷锚支护内力规律研究及智能平台研发.西安:西安理工大学,2011. (LIU Yuan-yuan. Regularity of the Internal Force of Bolt-shotcrete Support of Gate-shaped Tunnel and Development of Intelligent Platform. Xi’an: Xi’an University of Technology, 2011. (in Chinese))

基金

国家自然科学基金项目(50879068);西安理工大学博士学位论文创新基金(207-002J1306)

PDF(2109 KB)

Accesses

Citation

Detail

段落导航
相关文章

/