洞庭湖径流周期及环境流演变特征

曹艳敏, 王崇宇

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 219-226.

PDF(7578 KB)
PDF(7578 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 219-226. DOI: 10.11988/ckyyb.20250490
河流伦理建构研究专栏

洞庭湖径流周期及环境流演变特征

作者信息 +

Runoff Cycles andEvolution Characteristics of Environmental Flow Components in Dongting Lake

Author information +
文章历史 +

摘要

湖泊环境流与湖泊水生态系统及水生生物有直接相关性,可以有效评价流量变化特征对环境、生态系统的影响。以洞庭湖城陵矶、小河咀和石龟山三站1980—2020年逐日流量数据为基础,采用Morlet小波和IHA软件平台对洞庭湖径流周期和环境流进行分析。结果表明:①基于1980—2020年小波分析,城陵矶站、小河咀和石龟山站存在3个周期,主周期均为14 a;洞庭湖出口处、西洞庭湖入南洞庭湖处和澧水尾闾地区径流丰枯交替规律一致;②三峡工程运行后洞庭湖仍有大洪水事件出现,大洪水事件历时缩短,小洪水和高流量事件发生次数减少;特枯流量极小值增加,极小值出现时间提前;③湘江和藕池口环境流的单一化及资江、沅江和澧水环境流的多样化对洞庭湖环境流多样性无明显影响,原因为洞庭湖调蓄以及不同支流在湖区汇合抵消作用。研究成果可为洞庭湖环境及生态系统治理提供科学依据。

Abstract

[Objective] Environmental flow components (EFCs) are directly related to lake aquatic ecosystems and aquatic organisms, and can effectively evaluate the impact of flow variation characteristics on the environment and ecosystems. This study aims to clarify the characteristics of environmental flow variations in Dongting Lake after the operation of the Three Gorges Project, analyze the impact of these variations on the ecosystem of Dongting Lake, and provide a scientific basis for the management of the lake’s environment and ecosystem. [Methods] Based on the daily flow data at Chenglingji, Xiaohezui and Shiguishan stations in Dongting Lake from 1980 to 2020, Morlet wavelet analysis and the IHA software platform were used to analyze the runoff cycles and EFCs in the lake. [Results] Based on the wavelet analysis from 1980 to 2020, three cycles were identified at the Chenglingji, Xiaohezui, and Shiguishan stations, with a dominant cycle of 14 years for all. The runoff patterns between wet and dry periods showed consistent alternation in the outlet of Dongting Lake, the inlet from West Dongting Lake into South Dongting Lake, and the tail of the Lishui River. After the operation of the Three Gorges Project, large flood events still occurred in Dongting Lake. At Chenglingji, Xiaohezui, and Shiguishan stations, the peak flow values of these events increased to some extent, while their duration shortened. The frequency of small floods and high-flow events declined. Additionally, the minimum values of extreme low flows increased, and the timing of these values advanced. Combined with existing research findings, the homogenization of environmental flows in the Xiangjiang River and Ouchikou, and the diversification of those in the Zijiang, Yuanjiang, and Lishui Rivers, had no significant impact on the diversity of environmental flows in Dongting Lake. This was attributed to the regulation of Dongting Lake and the counterbalancing effect resulting from the convergence of different tributaries within the lake area. [Conclusions] It is recommended to increase the duration and frequency of high-flow releases during the spawning period of Chinese carp from April to July in Dongting Lake.

关键词

径流 / 周期 / 环境流 / 演变特征 / 洞庭湖

Key words

runoff / cycle / environmental flow components / evolution characteristics / Dongting Lake

引用本文

导出引用
曹艳敏, 王崇宇. 洞庭湖径流周期及环境流演变特征[J]. 长江科学院院报. 2025, 42(10): 219-226 https://doi.org/10.11988/ckyyb.20250490
CAO Yan-min, WANG Chong-yu. Runoff Cycles andEvolution Characteristics of Environmental Flow Components in Dongting Lake[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 219-226 https://doi.org/10.11988/ckyyb.20250490
中图分类号: X826 (生物评价、生态评价)   

参考文献

[1]
王西琴, 刘斌, 张远. 环境流量界定与管理[M]. 北京: 中国水利水电出版社, 2010.
(WANG Xi-qin, LIU Bin, ZHANG Yuan. Definition and Management of Environmental Flow[M]. Beijing: China Water & Power Press, 2010. (in Chinese))
[2]
HONG F T, GUO W X, WANG H X. A Comprehensive Assessment of the Hydrological Evolution and Habitat Quality of the Xiangjiang River Basin[J]. Water, 2023, 15(20): 3626.
[3]
XU S, ZHAI L, ZOU B, et al. Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China[J]. Water, 2024, 16(9): 1198.
[4]
LIU Y, YANG S Q, JIANG C, et al. Hydrological Drought in Dongting Lake Area (China) after the Running of Three Gorges Dam and a Possible Solution[J]. Water, 2020, 12(10): 2713.
[5]
LONG Y, TANG R, WU C, et al. Estimating Real-time Water Area of Dongting Lake Using Water Level Information[J]. Water, 2019, 11(6): 1240.
[6]
SONG Q, ZHAO R, FU H, et al. Water Area Extraction and Water Level Prediction of Dongting Lake Based on Sentinel-1 Dual-polarization Data Decomposition[J]. Remote Sensing, 2023, 15(19): 4655.
[7]
LIU Y, JIANG C, LONG Y, et al. Study on the Water Level-Discharge Relationship Changes in Dongting Lake Outlet Section over 70 Years and the Impact of Yangtze River Backwater Effect[J]. Water, 2023, 15(11): 2057.
[8]
CHENG J X, XU L G, FENG W J, et al. Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication[J]. Water, 2019, 11(5): 917.
[9]
LI X H, YE X C, LI Z, et al. Hydrological Drought in Two Largest River-connecting Lakes in the Middle Reaches of the Yangtze River, China[J]. Hydrology Research, 2023, 54(1): 82-98.
[10]
DAI L Q, MAO J Q, WANG Y, et al. Optimal Operation of the Three Gorges Reservoir Subject to the Ecological Water Level of Dongting Lake[J]. Environmental Earth Sciences, 2016, 75(14): 1111.
[11]
ZHANG J H, HUANG T, CHEN L, et al. Water-exchange Response of Downstream River-Lake System to the Flow Regulation of the Three Gorges Reservoir,China[J]. Water, 2019, 11(11): 2394.
[12]
DENG Y, JIANG W G, YE X C, et al. Water Occurrence in the Two Largest Lakes in China Based on Long-term Landsat Images: Spatiotemporal Changes, Ecological Impacts, and Influencing Factors[J]. Remote Sensing, 2022, 14(16): 3875.
[13]
李凯轩, 李志威, 胡旭跃, 等. 洞庭湖区三口水系生态基流研究[J]. 长江科学院院报, 2021, 38(8):19-24.
摘要
近年来大型水利工程的建设与运行、洞庭湖区三口水系分流量的持续减少和三口水系地区水资源的不合理利用,导致三口水系的生态流量严重不足。基于洞庭湖区三口水系的主要水文站2003—2018年逐日平均流量和1973—2002年逐月平均流量数据,提出一种综合考虑不同水文学法的生态基流确定方法,得出逐月和全年的生态基流推荐值,并分析其保证率和影响因素。结果表明:新江口站、沙道观站、弥陀寺站、康家岗站和管家铺站的全年生态基流分别为208.18、49.44、75.39、2.52、93.94 m<sup>3</sup>/s,全年生态基流保证率分别为84.83%、37.52%、51.88%、21.84%、42.60%;各水文站汛期的生态基流最高值均出现在7月份,8月份、9月份和6月份依次递减,汛期的生态基流及其保证率明显高于非汛期。研究提出的方法和计算结果可为洞庭湖区三口水系的水生态修复提供参考。
(LI Kai-xuan, LI Zhi-wei, HU Xu-yue, et al. Ecological Base Flow of Three Major Outlets Rivers of the Middle Yangtze River into the Dongting Lake Area[J]. Journal of Changjiang River Scientific Research Institute, 2021, 38(8):19-24. (in Chinese))
[14]
戴凌全, 张培培, 常曼琪, 等. 三峡水库出库流量变化对洞庭湖定居性鱼类产卵生境的影响[J]. 河海大学学报(自然科学版), 2023, 51(5): 38-45, 96.
(DAI Ling-quan, ZHANG Pei-pei, CHANG Man-qi, et al. Effect of Outflow from Three Gorges Reservoir on Spawning Habitat of Sedentary Fish in Dongting Lake[J]. Journal of Hohai University (Natural Sciences), 2023, 51(5): 38-45, 96. (in Chinese))
[15]
曹艳敏, 王崇宇, 黎小东, 等. 三峡水库蓄水过程中洞庭湖流量演变及生态效应[J]. 长江科学院院报, 2024, 41(9): 185-191, 199.
摘要
为科学定量评价三峡水库运行过程对洞庭湖径流及生态特征的影响,收集城陵矶、石龟山、南咀、小河咀4个水文站1988—2020年逐日流量数据,应用IHA-RVA法和Shannon指数法对三峡水库试运行阶段(2003—2008年)和三峡试运行后阶段(2009—2020年)流量演变和生态效应进行定量分析。结果表明:①三峡水库运行过程中汇入洞庭湖流量占比方面,湘、资、沅、澧四水占比持续提高,荆江三口占比持续下降;②三峡水库蓄水试运行阶段洞庭湖区水文站整体流量改变度和IHA高度改变指标个数高于三峡水库试运行后阶段,且城陵矶和石龟山整体改变度分别达到67.27%和69.55%,形成高度改变;③三峡水库试运行阶段,三峡水库蓄水下游流量上涨次数及上涨幅度减少,连续日流量正差异值R<sub>rate</sub>减少,洞庭湖Shannon指数均有下降趋势;三峡水库试运行后阶段按“枝城调度”规则运行保证三峡次数下游有中小洪水过程并增加下游枯水补给,R<sub>rate</sub>增加、Shannon指数有所回升。研究成果可为洞庭湖水安全和水生态健康提供科学依据。
(CAO Yan-min, WANG Chong-yu, LI Xiao-dong, et al. Flow Evolution of Dongting Lake during Three Gorges Reservoir Impoundment and Its Ecological Effects[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(9): 185-191, 199. (in Chinese))
[16]
王鸿翔, 李萌萌, 马志军, 等. 长江荆江三口环境流变化研究[J]. 水力发电, 2019, 45(5): 1-6.
(WANG Hong-xiang, LI Meng-meng, MA Zhi-jun, et al. Study on Environmental Flow Variation of the Three Outlets of Jingjiang River of Yangtze River[J]. Water Power, 2019, 45(5): 1-6. (in Chinese))
[17]
王鸿翔, 朱永卫, 查胡飞, 等. 水文变异下洞庭湖四水环境流研究[J]. 水生态学杂志, 2021, 42(4):10-17.
(WANG Hong-xiang, ZHU Yong-wei, ZHA Hu-fei, et al. Environmental Flows in Four Watersheds of Dongting Lake under Different Hydrological Conditions[J]. Journal of Hydroecology, 2021, 42(4):10-17. (in Chinese))
[18]
王学雷, 姜刘志. 三峡工程蓄水前后长江中下游环境流特征变化研究[J]. 华中师范大学学报(自然科学版), 2015, 49(5): 797-804.
(WANG Xue-lei, JIANG Liu-zhi. Study on Environmental Flow Change in the Middle-lower Yangtze River before and after the Impoundment of the Three Gorges Dam[J]. Journal of Central China Normal University (Natural Sciences), 2015, 49(5): 797-804. (in Chinese))
[19]
RICHTER B, THOMAS G A. Restoring Environmental Flows by Modifying Dam Operations[J]. Ecology and Society, 12(1): 12.
[20]
RICHTER B D, WARNER A T, MEYER J L, et al. A Collaborative and Adaptive Process for Developing Environmental Flow Recommendations[J]. River Research and Applications, 2006, 22(3): 297-318.
[21]
吴舒祺, 赵文吉, 杨阳, 等. 基于小波变换的长江中下游地区极端降水与大气环流响应关系研究[J]. 水资源与水工程学报, 2021, 32(4): 67-76.
(WU Shu-qi, ZHAO Wen-ji, YANG Yang, et al. Response of Extreme Precipitation Events in the Middle and Lower Reaches of the Yangtze River Basin to the Atmospheric Circulation Based on Continuous Wavelet Transform[J]. Journal of Water Resources and Water Engineering, 2021, 32(4): 67-76. (in Chinese))
[22]
CAO Y M, QIAN D Y, WANG C Y. Quantitative Retrospective Study on Spatiotemporal Evolution Characteristics and Driving Forces of Water Quality in Xiang River Basin[J]. Water Supply, 2023, 23(9):3761.
[23]
董世杰, 李英海, 吴江, 等. 近60年洞庭湖水位演变态势研究[J]. 湖泊科学, 2024, 36(2): 575-586.
(DONG Shi-jie, LI Ying-hai, WU Jiang, et al. Water Level Changes of Lake Dongting in Recent 60 Years[J]. Journal of Lake Sciences, 2024, 36(2): 575-586. (in Chinese))
[24]
匡燕鹉, 马忠红. 2017年洞庭湖特大洪水分析[J]. 水文, 2019, 39(3): 92-96.
(KUANG Yan-wu, MA Zhong-hong. Analysis of Extraordinary Flood in Dongting Lake Basin in 2017[J]. Journal of China Hydrology, 2019, 39(3): 92-96. (in Chinese))
[25]
陈桂亚, 张俊, 邹强. 三峡工程防洪调度研究及作用分析[J]. 中国水利, 2024(22): 41-47.
(CHEN Gui-ya, ZHANG Jun, ZOU Qiang. Studies on Flood Control Operation of the Three Gorges Project and Its Functions[J]. China Water Resources, 2024(22): 41-47. (in Chinese))
[26]
马寅初. 洞庭湖流域生态水文情势演变及其归因分析[D]. 郑州: 华北水利水电大学, 2024.
(MA Yin-chu. Evolution of Ecohydrological Situation and the Attribution Analysis in Dongtiong Lake Basin[D]. Zhegnhzou: North China University of Water Resources and Electric Power, 2024. (in Chinese))
[27]
张鸿洋, 胡春宏, 周曼, 等. 长江中下游区域性和流域性洪水流量演进分析[J/OL]. 水科学进展(2025-07-23)[2025-08-16]. https://kns.cnki.net/kcms/detail/32.1309.P.20250723.1602.002.html.
(ZHANG Hong-yang, HU Chun-hong, ZHOU Man, et al. Discharge Propagation Analysis of Regional and Basin Floods in the Middle and Lower Reaches of the Yangtze River[J/OL]. Advances in Water Science(2025-07-23)[2025-08-16]. https://kns.cnki.net/kcms/detail/32.1309.P.20250723.1602.002.html. (in Chinese))
[28]
尚海鑫, 胡春宏, 夏军强, 等. 洞庭湖入汇对荆江河段水位的顶托程度与范围[J]. 水科学进展, 2023, 34(3):431-441.
(SHANG Hai-xin, HU Chun-hong, XIA Jun-qiang, et al. Influence of Dongting Lake Inflow on the Degree and Range of Backwater Effect in the Jingjiang Reach[J]. Advances in Water Science, 2023, 34(3):431-441. (in Chinese))
[29]
程俊翔, 徐力刚, 姜加虎, 等. 洞庭湖出口径流变化及对生态系统的影响[J]. 长江流域资源与环境, 2019, 28(5): 1225-1234.
(CHENG Jun-xiang, XU Li-gang, JIANG Jia-hu, et al. Changes in Streamflow at the Outlet of Dongting Lake and Their Impacts on Ecosystems[J]. Resources and Environment in the Yangtze Basin, 2019, 28(5): 1225-1234. (in Chinese))
[30]
BAILLY D, AGOSTINHO A A, SUZUKI H I. Influence of the Flood Regime on the Reproduction of Fish Species with Different Reproductive Strategies in the Cuiabá River, Upper Pantanal, Brazil[J]. River Research and Applications, 2008, 24(9): 1218-1229.

基金

湖南省自然科学基金项目(2021JJ40026)
湖南省教育厅科学研究项目(21C0651)
益阳市哲学社会科学重大课题(2022YS011)

PDF(7578 KB)

Accesses

Citation

Detail

段落导航
相关文章

/