基于定向钻孔的深埋隧洞外水压力原位测试技术及应用

范时杰, 王子忠, 李珑, 陈英, 余磊, 麦高飞, 王博, 王军朝

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (8) : 217-222.

PDF(5653 KB)
PDF(5653 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (8) : 217-222. DOI: 10.11988/ckyyb.20241216
重大引调水工程基础理论与关键技术研究专栏

基于定向钻孔的深埋隧洞外水压力原位测试技术及应用

作者信息 +

In-Situ Testing Technology and Its Application for External Water Pressure in Deep-Buried Tunnels Based on Directional Drilling

Author information +
文章历史 +

摘要

隧洞外水压力是深埋隧洞施工设计的重要参数,在深埋隧洞的前期勘察阶段,难以通过传统的垂直钻孔勘探来获取此参数,工程上一般采用折减系数法对隧洞外水压力进行估算。为更精确地评价隧洞外水压力,提出了基于定向钻孔的深埋隧洞外水压力测试技术,研发了一套以存储式压力传感器为核心的外水压力原位测试系统,并应用于引大济岷工程二郎山隧洞花岗岩体洞段。利用定向钻孔对隧洞外水压力进行了全孔段测试,揭示沿深埋隧洞轴线方向外水压力分布情况,并与折减系数法的计算值进行比较分析。结果表明:①基于Pearson相关性分析,测试得到的外水压力与裂隙密集带宽度总和呈极强相关,相关性强度r=0.85;与岩体透水率呈强相关,相关性强度r=0.64;与试段埋深呈弱相关,相关性强度r=0.16。②实测外水压力比折减系数法计算结果高20.47%~42.17%。本研究通过实测手段获取隧洞在天然地下渗流场中的外水压力值比折减系数法更具真实性和可靠性。研究成果为隧洞前期勘察阶段外水压力测试提供了一种实测量化方法,为深埋隧洞的设计施工及运行安全提供了更为科学的参考。

Abstract

[Objective] External water pressure is a critical parameter in the construction design of deep-buried tunnels. During the early investigation stage, it is difficult to obtain this parameter through traditional vertical borehole exploration. In engineering practice, the reduction coefficient method is generally used to estimate the external water pressure of tunnels. To achieve more accurate evaluation, a testing technology for external water pressure in deep-buried tunnels was proposed based on directional drilling. An in-situ testing system for external water pressure, with storage-type pressure sensors as its core, was developed and applied to the granite section of the Erlangshan Tunnel in Dadu River to Minjiang River Water Diversion Project. [Methods] Full-depth testing of the external water pressure in the tunnel was conducted using directional drilling to reveal the distribution of external water pressure along the axis of the deep-buried tunnel. The calculated values obtained from the reduction coefficient method were analyzed and compared. [Results] Based on Pearson correlation analysis, the measured external water pressure exhibited an extremely strong correlation with the total width of the fracture-intensive zone (r=0.85), a strong correlation with rock mass permeability (r=0.64), and a weak correlation with the burial depth of the test section (r=0.16). The measured external water pressure was 20.47% to 42.17% higher than that calculated by the reduction coefficient method. [Conclusions] Compared with the traditional reduction coefficient method, this study analyzes the external water pressure of the tunnel using water pressure values obtained from segmented and continuous measurements in a natural three-dimensional groundwater seepage field through in-situ testing methods, providing more reliable analysis of tunnel external water pressure in engineering practice. This study provides an in-situ quantitative testing method for external water pressure testing during the early investigation stage of tunnels, thereby offering a more scientific reference for the design, construction, and operational safety of deep-buried tunnels.

关键词

深埋隧洞 / 外水压力 / 原位测试 / 复杂地质条件 / 存储式水压力传感器 / 折减系数法 / 引大济岷工程

Key words

deep-buried tunnel / external water pressure / in-situ testing / complex geological conditions / storage-type water pressure sensor / reduction coefficient method / Dadu River to Minjiang River Water Diversion Project

引用本文

导出引用
范时杰, 王子忠, 李珑, . 基于定向钻孔的深埋隧洞外水压力原位测试技术及应用[J]. 长江科学院院报. 2025, 42(8): 217-222 https://doi.org/10.11988/ckyyb.20241216
FAN Shi-jie, WANG Zi-zhong, LI Long, et al. In-Situ Testing Technology and Its Application for External Water Pressure in Deep-Buried Tunnels Based on Directional Drilling[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(8): 217-222 https://doi.org/10.11988/ckyyb.20241216
中图分类号: P641.73   

参考文献

[1]
王秀英, 王梦恕, 张弥. 山岭隧道堵水限排衬砌外水压力研究[J]. 岩土工程学报, 2005, 27(1): 125-127.
(WANG Xiu-ying, WANG Meng-shu, ZHANG Mi. Research on Regulating Water Pressure Acting on Mountain Tunnels by Blocking Ground Water and Limiting Discharge[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 125-127.(in Chinese))
[2]
皇甫明, 谭忠盛, 王梦恕, 等. 暗挖海底隧道渗流量的解析解及其应用[J]. 中国工程科学, 2009, 11(7): 66-70.
(HUANGFU Ming, TAN Zhong-sheng, WANG Meng-shu, et al. Analytical Solutions for Water Inflow into an Underwater Tunnel and Its Application[J]. Engineering Sciences, 2009, 11(7): 66-70.(in Chinese))
[3]
SHIN J H, POTTS D M, ZDRAVKOVIC L. The Effect of Pore-water Pressure on NATM Tunnel Linings in Decomposed Granite Soil[J]. Canadian Geotechnical Journal, 2005, 42(6): 1585-1599.
[4]
LIU Z J, HUANG Y, ZHOU D, et al. Analysis of External Water Pressure for a Tunnel in Fractured Rocks[J]. Geofluids, 2017, 2017: 8618613.
[5]
HUANG Y, FU Z, CHEN J, et al. The External Water Pressure on a Deep Buried Tunnel in Fractured Rock[J]. Tunnelling and Underground Space Technology, 2015, 48: 58-66.
[6]
王如宾, 王新越, 张文全, 等. 含交叉断层深埋隧洞围岩衬砌外水压力物理模型试验[J]. 清华大学学报(自然科学版), 2024, 64(7):1179-1192.
(WANG Ru-bin, WANG Xin-yue, ZHANG Wen-quan, et al. Physical Model Experiment of External Water Pressure in Lining Surrounding Rock of a Deep Tunnel with Cross Faults[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(7): 1179-1192.(in Chinese))
[7]
郭鸿雁, 纪亚英, 方林, 等. 基于流固耦合分析的富水隧道外水压力与限量排放标准研究[J]. 岩土工程学报, 2019, 41(增刊1): 165-168.
(GUO Hong-yan, JI Ya-ying, FANG Lin, et al. External Water Pressures and Limited Emission Standards of Water-rich Tunnels Based on Fluid-solid Coupling Analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Supp. 1): 165-168.(in Chinese))
[8]
马保松, 程勇, 刘继国, 等. 超长距离水平定向钻进技术在隧道精准地质勘察的研究及应用[J]. 隧道建设(中英文), 2021, 41(6): 972-978.
(MA Bao-song, CHENG Yong, LIU Ji-guo, et al. Tunnel Accurate Geological Investigation Using Long-distance Horizontal Directional Drilling Technology[J]. Tunnel Construction, 2021, 41(6): 972-978.(in Chinese))
[9]
徐正宣, 刘建国, 吴金生, 等. 超深定向钻探技术在川藏铁路隧道勘察中的应用[J]. 工程科学与技术, 2022, 54(2):21-29.
(XU Zheng-xuan, LIU Jian-guo, WU Jin-sheng, et al. Application of Ultra-deep Directional Drilling Technology in Sichuan-Tibet Railway Tunnel Investigation[J]. Engineering Science and Technology, 2022, 54(2): 21-29.(in Chinese))
[10]
付伟. 取芯水平钻探对川藏铁路隧道施工效率的影响研究[J]. 隧道建设(中英文), 2021, 41(7):1091-1098.
(FU Wei. Influence of Horizontal Coring Drilling on Construction Efficiency of Sichuan-Tibet Railway Tunnel[J]. Tunnel Construction (Chinese & English), 2021, 41(7):1091-1098.(in Chinese))
[11]
宇天奇, 王博, 麦高飞, 等. 四川省引大济岷工程地质勘察报告[R]. 成都: 四川水发勘测设计研究有限公司,2024:100-105.
(YU Tian-qi, WANG Bo, MAI Gao-fei, et al. Engineering Geological Investigation Report of Dadu River to Minjiang River Diversion Project in Sichuan Province[R]. Chengdu: Sichuan Water Development Investigation, Design & Research Co., Ltd., 2024: 100-105.(in Chinese))
[12]
GB 50487—2008, 水利水电工程地质勘察规范[S]. 北京: 中国计划出版社, 2009.
(GB 50487—2008, Code for Engineering Geological Investigation of Water Resources and Hydropower[S]. Beijing: China Planning Press, 2009.(in Chinese))
[13]
SL 31—2003, 水利水电工程钻孔压水试验规程[S]. 北京: 中国水利水电出版社, 2003.
(SL 31—2003, Code of Water Pressure Test in Borehole for Water Resources and Hydropower Engineering[S]. Beijing: China Water & Power Press, 2003.(in Chinese))

基金

水利部重大科技项目(SKS-2022105)
四川省科技计划资助项目(2024JDRC0088)

编辑: 陈敏
PDF(5653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/