PDF(5909 KB)
PDF(5909 KB)
PDF(5909 KB)
软岩隧洞约束混凝土箱型钢拱架支护承载特性
Bearing Characteristics of Confined Concrete Box Steel Arch in Soft Rock Tunnel
约束混凝土箱型钢拱架是箱型钢和核心混凝土形成的组合拱架结构,也是有效控制软岩隧洞变形的一种新型支护形式,目前尚缺少关于这类拱架承载特性的研究工作。为此,推导了约束混凝土箱型截面压弯屈服判据,分析了该类型拱架的强度极限承载力和结构稳定极限承载力,同时对比了约束混凝土箱型钢拱架、H型钢拱架、箱型钢拱架3种类型拱架的承载特性。研究结果表明:约束混凝土箱型钢拱架截面屈服判据值在同型号中最高,其轴压屈服强度极限平均为箱型截面的1.4倍、H型钢截面的2.2倍,纯弯屈服强度极限平均为箱型截面的1.1倍、H型钢截面的1.5倍;约束混凝土箱型钢拱架强度和结构稳定极限承载力均高于同型号箱型和H型钢拱架,强度极限承载力是箱型钢拱架的1.3~1.4倍、H型钢拱架的2.2~2.3倍;结构稳定极限承载力是箱型钢拱架的1.03~1.04倍、H型钢拱架的1.10~1.27倍。约束混凝土箱型钢拱架承载特性优势显著,能够为软岩隧洞提供更为可靠和高效的支护。
Confined concrete box steel arch is a composite arch structure comprising box steel and core concrete. It is a novel support form designed to effectively control deformation in soft rock tunnels. Currently, there is limited research on the bearing characteristics of this arch type. In view of this, a compression-bending yield criterion for confined concrete box section is deduced, and the ultimate bearing capacities for strength and structural stability are analyzed respectively. Furthermore, the bearing characteristics of three arch types: confined concrete box steel arch, H-type steel arch, and box steel arch, are compared. Results indicate that the yield criterion value for the confined concrete box steel arch section is the highest among the types considered. Specifically, its axial compression yield limit is 1.4 times that of the box type and 2.2 times that of the H-type. Moreover, the pure bending yield limit is 1.1 times that of the box type and 1.5 times that of the H-type. The strength and ultimate bearing capacity of confined concrete box steel arch surpass those of the box type and H-type steel arches. The ultimate bearing capacity for strength is 1.3-1.4 times that of the box steel arch and 2.2-2.3 times that of the H-type steel arch. The ultimate bearing capacity for structural stability is 1.03-1.04 times that of the box steel arch and 1.10-1.27 times that of the H-type steel arch. Consequently, the confined concrete box steel arch exhibits significant advantages in load-bearing characteristics and can provide reliable and efficient support in soft rock tunnels.
软岩隧洞 / 约束混凝土箱型钢拱架 / 压弯屈服判据 / 强度极限承载力 / 结构稳定极限承载力
soft rock tunnel / confined concrete box steel arch / compression-bending yield criterion / strength resistant capability / ultimate bearing capacity of structure stability
| [1] |
周英三. 日本青函隧道工程进展情况[J]. 铁道科技动态, 1979(4): 38-40.
|
| [2] |
符华兴. 钢管混凝土支撑在不良地质隧道中的应用[J]. 铁道标准设计通讯, 1984, 28(3):11-16.
|
| [3] |
谷拴成, 刘皓东. 钢管混凝土拱架在地铁隧道中的应用研究[J]. 铁道建筑, 2009, 49(12): 56-60.
|
| [4] |
臧德胜, 韦潞. 钢管混凝土支架的研究和实验室试验[J]. 建井技术, 2001, 22(6): 25-28.
|
| [5] |
高延法, 王波, 王军, 等. 深井软岩巷道钢管混凝土支护结构性能试验及应用[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2604-2609.
|
| [6] |
孟德军. 杨庄矿软岩巷道钢管混凝土支架支护理论与技术研究[D]. 北京: 中国矿业大学(北京), 2013.
(
|
| [7] |
刘国磊. 钢管混凝土支架性能与软岩巷道承压环强化支护理论研究[D]. 北京: 中国矿业大学(北京), 2013.
(
|
| [8] |
李术才, 邵行, 江贝, 等. 深部巷道方钢约束混凝土拱架力学性能及影响因素研究[J]. 中国矿业大学学报, 2015, 44(3):400-408.
|
| [9] |
王琦, 李术才, 王汉鹏, 等. 可缩式钢管混凝土支架力学性能及经济效益[J]. 山东大学学报(工学版), 2011, 41(5): 103-107,113.
|
| [10] |
王琦, 李为腾, 李术才, 等. 深部巷道U型约束混凝土拱架力学性能及支护体系现场试验研究[J]. 中南大学学报(自然科学版), 2015, 46(6): 2250-2260.
|
| [11] |
李为腾, 李术才, 王琦, 等. 不同侧压比荷载下U型约束混凝土拱架全尺寸试验研究[J]. 煤炭学报, 2015, 40(9): 2075-2084.
|
| [12] |
李为腾, 王琦, 李术才, 等. 方钢约束混凝土拱架套管节点抗弯性能研究[J]. 中国矿业大学学报, 2015, 44(6): 1072-1083.
|
| [13] |
王斌, 杨延栋, 周建军, 等. 高地应力软岩地层敞开式TBM法隧洞围岩变形控制技术: 以香炉山隧洞为例[J]. 隧道建设(中英文), 2024, 44(2): 341-348.
|
| [14] |
龙驭球, 包世华. 结构力学教程[M]. 北京: 高等教育出版社, 2001.
(
|
| [15] |
张尹, 李为腾, 杨博, 等. 不同截面形状钢管混凝土拱架的截面压弯特性[J]. 煤矿安全, 2018, 49(1): 80-84.
目前巷道支护采用的钢管混凝土拱架的横截面形状有圆形、方形和D形。为掌握不同截面形状钢管混凝土拱架承载性能的差异,采用ANSYS对不同截面试件进行了压弯试验,统计分析了3种不同截面构件的压弯承载力。结果表明:随着偏心率增大,试件轴向抗压承载力降低,抗弯承载力提高;在截面含钢量及内部混凝土等级相同的情况下,圆形构件抗压弯承载能力最强,其极限弯矩分别是方形、D形正弯、D形反弯的1.3倍、1.65倍、2.8倍,其M-N曲线包络面积是后三者的1.44倍、1.83倍、2.75倍;截面形状对构件抗弯承载力的影响显著大于对抗压承载力的影响;D形截面构件压弯承载力受偏压方向影响明显,负偏压时承载力更低。
At present, the cross section forms of concrete-filled steel tubular arches which utilized in roadway support are mainly circle, square and D shape. To master the influence laws of different cross-sectional shapes on bearing property of concrete-filled steel tubular arches, compression-bending tests were carried out on specimens with different cross sections using ANSYS, and the compression-bending bearing property of three different cross sections of specimens were statistically analyzed. The results show that: with the increasing of the eccentricity, the axial compression bearing capacity reduced and the bending bearing capacity increased. The circular specimens have the best compression-bending bearing property, whose ultimate moment was 1.3 times, 1.65 times and 2.8 times as large as the tested members with square, circular, D shape, and reverse D shape, respectively; and the envelope area of M-N curve was 1.44 times, 1.83 times and 2.75 times as large as the above three shapes, respectively. The cross section forms had much more significant effects on the bending capacity than compressive capacity. Compression-bending bearing property of D shape was affected obviously by bias direction, and which was lower in reverse bending. |
| [16] |
张逸, 欧伟, 周强, 等. 箱型截面齐次广义屈服函数的数值拟合及极限承载力分析[J]. 钢结构, 2018, 33(3): 44-49, 103.
|
| [17] |
刘鸿文. 高等材料力学[M]. 北京: 高等教育出版社, 1985.
(
|
| [18] |
尤春安. 巷道金属支架的计算理论[M]. 北京: 煤炭工业出版社, 2000.
(
|
| [19] |
李为腾, 李术才, 王新, 等. U型约束混凝土拱架屈服承载力计算方法研究[J]. 中国矿业大学学报, 2016, 45(2):261-271.
|
| [20] |
陈绍蕃. 钢结构稳定设计指南[M]. 3版. 北京: 中国建筑工业出版社, 2013.
(
|
| [21] |
(
|
/
| 〈 |
|
〉 |