畸形波生成及其影响因素的数值研究

李梦雨, 吕超凡, 卢金友, 栾华龙, 朱勇辉, 朱家熙, 葛建忠, Makiko Iguchi

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (12) : 75-85.

PDF(2900 KB)
PDF(2900 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (12) : 75-85. DOI: 10.11988/ckyyb.20241029
水力学

畸形波生成及其影响因素的数值研究

作者信息 +

Numerical Study on Freak Wave Generation and Its Influencing Factors

Author information +
文章历史 +

摘要

畸形波生成及演化的影响因素众多,基于自主研发的黏性流数值波浪水槽,开展畸形波生成及其影响因素的数值研究。首先利用试验结果验证数值波浪水槽生成畸形波的准确性,然后模拟分析畸形波传播过程中的波面变化,采用谐波分离方法分析波群非线性对畸形波传播过程中的波面变形、聚焦位置和时间及内部结构变化的影响规律;之后开展数值试验,分析谱型、波群的组成波个数、频谱宽度、谱峰频率及水深等关键因素对畸形波生成的影响规律,深入探究各个因素的敏感性。结果表明:采用不同频谱类型产生的畸形波表现出不同的能量分布和聚焦时空变化。同时,组成波个数影响波群的聚焦重现周期。在有限水深情况下,畸形波的聚焦幅值并非随着谱宽的变窄而增大,同时受水深、谱峰频率等因素的影响较大。该研究有助于理解畸形波的生成机制,对实验室生成畸形波具有参考意义。

Abstract

[Objective] Freak wave is a marine disaster characterized by extremely large wave height, strong nonlinearity, and high destructiveness. The results of wave superposition method for simulating freak waves are influenced by multiple parameters, and the sensitivity and interaction mechanisms of these factors require systematic investigation. [Methods] Based on a self-developed viscous-flow numerical wave tank, we conducted a numerical simulation on the generation of freak waves and their influencing factors. First, the reliability of the numerical model was verified against physical experimental data. Subsequently, the harmonic separation method was employed to examine the influence of wave group nonlinearity on wave surface deformation, focusing characteristics, and frequency spectrum structure. Through numerical experiments, the effects of key parameters—including spectral type, number of constituent waves, spectral bandwidth, spectral peak frequency, and water depth—were investigated. [Results] 1) During the generation of a freak wave, wave-wave nonlinear interactions caused energy to transfer from the primary frequency to both high and low frequencies, resulting in significant spectral broadening. Low-frequency free pseudo-harmonics propagated faster, leading to an actual wave height slightly larger than the theoretical value. High-frequency bound harmonics formed a tail wave, which had a minor influence on the shape of the main peak. 2) The spectral type significantly influenced the wave profile characteristics: the JONSWAP and P-M spectra, with concentrated energy, tended to generate freak waves with steep crests. The CWA spectrum produced gentle wave profiles; the CWS spectrum yielded the smallest focused amplitude. 3) The number of constituent waves affected the focusing recurrence period. An insufficient number could generate secondary focused waves. It was recommended to use 29 constituent waves to balance computational accuracy and efficiency. 4) Under finite water depth conditions, the focused amplitude reached its maximum when the spectral bandwidth was 0.7 Hz, indicating that the amplitude was co-modulated by the spectral bandwidth, water depth, and spectral peak frequency. 5) An increase in the spectral peak frequency enhanced nonlinearity, resulting in wave profile steepening. However, an excessively high frequency led to wave breaking, thereby reducing the amplitude. 6) Water depth influenced the wave profile by altering the dispersion characteristics. A greater water depth resulted in faster wave speed and a higher amplitude, whereas an excessively small water depth readily induced wave breaking. [Conclusion] The main innovations of this research include: establishing a high-precision viscous-flow numerical model capable of accurately simulating the evolution of nonlinear waves including breaking effects; employing the harmonic separation method to reveal the influence mechanism of wave group nonlinearity on wave surface structure and energy distribution; and clarifying the coupling effects of various factors under finite water depth conditions through multi-parameter sensitivity experiments. The findings of this study deepen the understanding of freak wave generation mechanisms, provide an important theoretical basis and parameter selection guidance for laboratory simulation of freak waves.

关键词

畸形波 / 数值波浪水槽 / 波群非线性 / 波浪生成 / 影响因素

Key words

freak waves / numerical wave tank / wave group nonlinearity / wave generation / influencing factors

引用本文

导出引用
李梦雨, 吕超凡, 卢金友, . 畸形波生成及其影响因素的数值研究[J]. 长江科学院院报. 2025, 42(12): 75-85 https://doi.org/10.11988/ckyyb.20241029
LI Meng-yu, LÜ Chao-fan, LU Jin-you, et al. Numerical Study on Freak Wave Generation and Its Influencing Factors[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(12): 75-85 https://doi.org/10.11988/ckyyb.20241029
中图分类号: TV871 (堤防)   

参考文献

[1]
DRAPER L. ‘Freak’ Ocean Waves[J]. Weather, 1966, 21(1): 2-4.
[2]
CHIEN H, KAO C C, CHUANG L Z H. On the Characteristics of Observed Coastal Freak Waves[J]. Coastal Engineering Journal, 2002, 44(4): 301-319.
[3]
DYSTHE K, KROGSTAD H E, MÜLLER P. Oceanic Rogue Waves[J]. Annual Review of Fluid Mechanics, 2008, 40: 287-310.
[4]
DIDENKULOVA E G, PELINOVSKY E N. Freak Waves in 2011—2018[J]. Doklady Earth Sciences, 2020, 491(1): 187-190.
[5]
DIDENKULOVA E, DIDENKULOVA I, MEDVEDEV I. Freak Wave Events in 2005—2021:Statistics and Analysis of Favourable Wave and Wind Conditions[J]. Natural Hazards and Earth System Sciences, 2023, 23(4):1653-1663.
[6]
PELINOVSKY E, KHARIF C. Extreme Ocean Waves[M]. Switzerland: Springer, 2008.
[7]
张亚荣. 基于双波群聚焦的畸形波形成机理分析[D]. 大连: 大连理工大学, 2019.
(ZHANG Ya-rong. Analysis of the Formation Mechanism of Rogue Waves Based on Double Wave Group Focusing[D]. Dalian: Dalian University of Technology, 2019. (in Chinese))
[8]
CHAPLIN J R. On Frequency-focusing Unidirectional Waves[J]. International Journal of Offshore and Polar Engineering, 1996, 6(2):131-137.
[9]
BRANDINI C, GRILLI S. Modeling of Freak Wave Generation in a 3D-NWT[C]// Isope International Ocean and Polar Engineering Conference. Stavanger, Norway. June 17-22, 2001:ISOPE-I.
[10]
黄国兴. 畸形波的模拟方法及基本特性研究[D]. 大连: 大连理工大学, 2002.
(HUANG Guo-xing. Simulation Methods and Fundamental Characteristics of Rogue Waves[D]. Dalian: Dalian University of Technology, 2002. (in Chinese))
[11]
ZHAO X Z, HU C H, SUN Z C. Numerical Simulation of Extreme Wave Generation Using VOF Method[J]. Journal of Hydrodynamics, Ser B, 2010, 22(4): 466-477.
[12]
NING D Z, ZANG J, LIU S X, et al. Free-surface Evolution and Wave Kinematics for Nonlinear Uni-directional Focused Wave Groups[J]. Ocean Engineering, 2009, 36(15/16): 1226-1243.
[13]
裴玉国. 畸形波的生成及基本特性研究[D]. 大连: 大连理工大学, 2008.
(PEI Yu-guo. The Generation of Freak Waves and Its Behaviors[D]. Dalian: Dalian University of Technology, 2008. (in Chinese))
[14]
赵西增. 畸形波的实验研究和数值模拟[D]. 大连: 大连理工大学, 2009.
(ZHAO Xi-zeng. Experimental and Numerical Study of Freak Waves[D]. Dalian: Dalian University of Technology, 2009. (in Chinese))
[15]
刘赞强. 畸形波模拟及其与核电取水构筑物作用探究[D]. 大连: 大连理工大学, 2011.
(LIU Zan-qiang. Freak Wave Simulation and Its Interaction with Nuclear Power Station Ingarage Structure[D]. Dalian: Dalian University of Technology, 2011. (in Chinese))
[16]
崔成, 张宁川, 郭传胜, 等. 变水深对畸形波及其时频能量谱的影响[J]. 海洋学报, 2011, 33(6): 173-179.
(CUI Cheng, ZHANG Ning-chuan, GUO Chuan-sheng, et al. Impact of Water Depth Variation on Simulated Freak Waves and Their Time-frequency Energy Spectrum[J]. Acta Oceanologica Sinica, 2011, 33(6): 173-179. (in Chinese))
[17]
扈喆. 畸形波数值模拟及其对结构物的作用[D]. 上海: 上海交通大学, 2015.
(HU Zhe. Numerical Simulation of Rogue Waves and Their Action on Structures[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese))
[18]
YU Xiang-jun, LI Qing-hong, WANG Hua. Phase-Focusing Model of Freak Wave Based on Boussinesq Equation[C]// Proceedings of 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications(MASTA 2019):Hangzhou, China.May 26-27, 2019.
[19]
王磊. 不同波况下畸形波发生概率的模拟研究[D]. 大连: 大连理工大学, 2021.
(WANG Lei. Investigations on Occurrence Probability of Freak Waves under Various Wave Conditions[D]. Dalian: Dalian University of Technology, 2021. (in Chinese))
[20]
WANG L, DING K, ZHOU B, et al. Quantitative Prediction of the Freak Wave Occurrence Probability in Co-propagating Mixed Waves[J]. Ocean Engineering, 2023, 271: 113810.
[21]
崔成, 潘文博. 短峰畸形波生成、演化过程的外部特征研究[J]. 海洋学报, 2023, 45(7): 79-89.
(CUI Cheng, PAN Wen-bo. Study on the External Characteristics of the Generation and Evolution of Short-crested Freak Waves[J]. Haiyang Xuebao, 2023, 45(7): 79-89. (in Chinese))
[22]
刘震, 吴永顺, 周文俊, 等. 畸形波物理水池模拟与传播特性研究[J/OL]. 华中科技大学学报(自然科学版). 2024.
(LIU Zhen, WU Yong-shun, ZHOU Wen-jun, et al. Physical Wave Basin Simulation and Propagation Characteristics of Rogue Waves[J/OL]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2024. (in Chinese))
[23]
KHARIF C, PELINOVSKY E. Physical Mechanisms of the Rogue Wave Phenomenon[J]. European Journal of Mechanics - B/Fluids, 2003, 22(6): 603-634.
[24]
CHOI J, YOON S B. Numerical Simulations Using Momentum Source Wave-maker Applied to RANS Equation Model[J]. Coastal Engineering, 2009, 56(10):1043-1060.
[25]
LIU X, LIN P, SHAO S. ISPH Wave Simulation by Using an Internal Wave Maker[J]. Coastal Engineering, 2015, 95: 160-170.
[26]
ZHAO X, HU C. Numerical and Experimental Study on a 2-D Floating Body under Extreme Wave Conditions[J]. Applied Ocean Research, 2012, 35: 1-13.
[27]
LI M, ZHAO X, YE Z, et al. Generation of Regular and Focused Waves by Using an Internal Wave Maker in a CIP-based Model[J]. Ocean Engineering, 2018, 167: 334-347.
[28]
ADCOCK T A A, TAYLOR P H. Non-linear Evolution of Uni-directional Focussed Wave-groups on a Deep Water: A Comparison of Models[J]. Applied Ocean Research, 2016, 59: 147-152.
[29]
BALDOCK T E. Non-Linear Transient Water Waves[D]. London,UK: Imperial College of Science, Technology and Medicine, 1995.
[30]
BALDOCK T E, SWAN C, TAYLOR P H. A Laboratory Study of Nonlinear Surface Waves on Water[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1996, 354(1707): 649-676.

基金

国家重点研发计划项目(2022YFE0117500)
国家自然科学基金项目(52301310)
国家自然科学基金项目(42376166)
中国博士后科学基金项目(2023M740369)
中国博士后科学基金项目(2024T170761)
中央级公益性科研院所基本科研业务费专项资金资助项目(CKSF2023321/HL)
中央级公益性科研院所基本科研业务费专项资金资助项目(CKSF2024326/HL)
中央级公益性科研院所基本科研业务费专项资金资助项目(CKSF20231009/HL)

编辑: 任坤杰
PDF(2900 KB)

Accesses

Citation

Detail

段落导航
相关文章

/