复杂条件下双筒深竖井施工结构应力变形分析

易顺, 李红心, 潘家军, 王艳丽, 程华强, 徐晗, 陈云

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 120-128.

PDF(8618 KB)
PDF(8618 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 120-128. DOI: 10.11988/ckyyb.20240968
岩土工程

复杂条件下双筒深竖井施工结构应力变形分析

作者信息 +

Stress Deformation of Construction Structures in Double-Tube Deep Shafts under Complex Conditions

Author information +
文章历史 +

摘要

深竖井作为水工岩土工程中一种常见的地下工程型式,其应力变形及安全性问题受到广泛关注。依托某引调水工程,对临近水库的双筒深竖井应力变形规律展开研究分析。首先借助多种软件平台,开展交互式建模,构建能反映实际复杂条件下的双筒深竖井三维数值模型,继而分别研究了不同施工因素对双筒竖井结构应力变形的影响规律,并对不同影响因素展开参数敏感性分析。研究结果表明:地连墙分幅是双筒竖井施工过程中的最敏感因素,地连墙嵌固深度次之,施工顺序和分节开挖高度对施工的影响较小。在竖井施工过程中,尤其要注意地连墙分幅的影响。研究成果可为类似水工岩土工程的应力变形研究提供有益的参考。

Abstract

[Objective] As a common form of underground structure in hydraulic geotechnical engineering, deep shafts have attracted widespread attention regarding their stress deformation and safety issues. This study takes a double-tube deep shaft near a reservoir in a water diversion project as the research subject, aiming to investigate its stress deformation characteristics and key influencing factors. [Methods] An integrated numerical modeling approach was employed, using multi-software platform interactive modeling to establish a 3D numerical model that accounted for complex geological conditions and reservoir proximity effects. Then, the influence patterns of key parameters, such as diaphragm wall segmentation, embedment depth, construction sequence, and segmented excavation height, were systematically analyzed. [Results] Diaphragm wall segmentation was identified as the most sensitive factor affecting the stress deformation of structures, with its segmentation scheme directly determining the distribution patterns of wall stress deformation. Embedment depth of the diaphragm wall ranked second in significance, while the construction sequence and segmented excavation height exhibited relatively minor effects on construction. [Conclusions] This study innovatively reveals the stress deformation mechanisms of double-tube shafts, providing crucial theoretical foundations and practical guidance for the safe construction of similar underground hydraulic engineering projects.

关键词

双筒深竖井 / 交互式建模 / 施工因素 / 应力变形 / 敏感性分析

Key words

double-tube deep shaft / interactive modeling / construction factors / stress deformation / sensitivity analysis

引用本文

导出引用
易顺, 李红心, 潘家军, . 复杂条件下双筒深竖井施工结构应力变形分析[J]. 长江科学院院报. 2025, 42(10): 120-128 https://doi.org/10.11988/ckyyb.20240968
YI Shun, LI Hong-xin, PAN Jia-jun, et al. Stress Deformation of Construction Structures in Double-Tube Deep Shafts under Complex Conditions[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 120-128 https://doi.org/10.11988/ckyyb.20240968
中图分类号: TU442 (有粘合力(凝聚性)土与地基)   

参考文献

[1]
李建斌. 我国掘进机研制现状、问题和展望[J]. 隧道建设(中英文), 2021, 41(6):877-896.
(LI Jian-bin. Current Status, Problems and Prospects of Research,Designng Machine in China, and Manufacturing of Bori[J]. Tunnel Construction, 2021, 41(6):877-896. (in Chinese))
[2]
荆国业, 韩博, 刘志强. 全断面竖井掘进机凿井技术[J]. 煤炭工程, 2020, 52(10): 29-33.
摘要
目前,我国煤矿井筒建设方法,以普通凿井法为主、特殊凿井法为辅。介绍了特殊凿井法中使用机械破岩的竖井钻机钻井技术、反井钻机钻井技术发展历程与应用现状。井筒掘进施工安全与效率是深井建设的基石,发展机械化凿井技术装备是深井建设少人化、无人化的保障。分析了部分断面掘进机凿井技术与装备的研究现状,提出了需要研制全断面竖井掘进机。对全断面竖井掘进机的井帮稳定、凿井工序、掘进参数等关键技术的特点和适用性进行了探讨。针对施工过程下部掘进、排渣与上部支护平行作业,指出滚刀破岩、上排渣和定向钻进将成为技术攻关的方向和工程应用的难点。尽快开发全断面竖井掘进机凿井技术是综合机械化凿井的发展方向和趋势,对于建井技术发展和地下工程建设具有重大意义。
(JING Guo-ye, HAN Bo, LIU Zhi-qiang. Research Onsinking Technology of Full-section Shaft Boring Machine[J]. Coal Engineering, 2020, 52(10): 29-33. (in Chinese))
The shaft construction method of coal mine in China is dominated by conventional sinking method and supplemented by special sinking method. This paper introduces the development course and application status of drilling technology using mechanical rock breaking with shaft drilling machine and raise boring machine. Safety and efficiency in shaft excavation are the cornerstone of deep shaft construction. The development of mechanized sinking technology and equipment is a guarantee of less humanized and unmanned construction of deep shaft. The research status of drilling technology and equipment of partial section shaft boring machine is analyzed. The need to develop full section shaft boring machine is proposed. The characteristics and applicability of key technology, including sidewall stabilization, sinking process, drilling parameter, are discussed. In view of the parallel operation of excavation, slag discharge and support during construction, rock breaking, host system, and directed driling will become the direction of technical research and the difficult point of engineering application. Drilling technique of full section shaft boring machine is the development direction and trend of integrated mechanized shaft sinking, which is of great significance to mine construction technology development and underground engineering construction.
[3]
肖瑞玲. 立井施工技术发展综述[J]. 煤炭科学技术, 2015, 43(8): 13-17, 22.
(XIAO Rui-ling. Review on Development of Mine Shaft Construction Technology[J]. Coal Science and Technology, 2015, 43(8): 13-17, 22. (in Chinese))
[4]
史蓝天, 李传勋. 真空联合多级堆载下考虑井阻时空变化的竖井地基固结解析解[J]. 岩石力学与工程学报, 2023, 42(增刊1): 3755-3766.
(SHI Lan-tian, LI Chuan-xun. Analytical Solution of Vertical Shaft Foundation Consolidation under Vacuum Combined with Multi-stage Surcharge Considering Temporal and Spatial Variation of Well Resistance[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Supp. 1): 3755-3766. (in Chinese))
[5]
曹程明, 龙照, 时轶磊, 等. 小尺寸深竖井侧壁内力与变形分布规律计算分析[J]. 地下空间与工程学报, 2022, 18(增刊1):51-56,73.
(CAO Cheng-ming, LONG Zhao, SHI Yi-lei, et al. Distribution Regulation Calculation and Analysis of Internal Force and Deformation in Side Wall of Small-size Deep Shaft[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(Supp. 1): 51-56, 73. (in Chinese))
[6]
易顺, 林伟宁, 陈健, 等. 基于随机场理论的基坑开挖地表及围护墙变形分析[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3389-3398.
(YI Shun, LIN Wei-ning, CHEN Jian, et al. Deformation Analysis of Foundation Pit Excavation Surface and Retaining Wall Based on Random Field Theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Supp. 2): 3389-3398. (in Chinese))
[7]
秦政, 陈建伟, 李功子, 等. 复杂环境下竖井掘进与局部爆破开挖组合施工技术研究[J]. 水利水电技术(中英文), 2023, 54(3): 105-115.
(QIN Zheng, CHEN Jian-wei, LI Gong-zi, et al. Research of the Combined Construction Technology of Shaft Boring and Local Blasting Excavation under Complex Environment[J]. Water Resources and Hydropower Engineering, 2023, 54(3): 105-115. (in Chinese))
[8]
张卜, 姬若愚, 钟紫蓝, 等. 穿越岩土交界面竖井衬砌壁厚对其水平地震响应影响研究[J]. 土木工程学报, 2022, 55(增刊1):250-256.
(ZHANG Bu, JI Ruo-yu, ZHONG Zi-lan, et al. Study on the Influence of Lining Thickness of Shaft Passing Through Geotechnical Interface on Its Horizontal Seismic Response[J]. China Civil Engineering Journal, 2022, 55(Supp. 1): 250-256. (in Chinese))
[9]
杨鹏, 蒲诃夫, 郑俊杰, 等. 真空-堆载联合预压下竖井地基大变形非线性固结模型[J]. 岩石力学与工程学报, 2019, 38(10):2103-2111.
(YANG Peng, PU He-fu, ZHENG Jun-jie, et al. A Large-strain Nonlinear Consolidation Model of Saturated Soft Soils Stabilized by the Vacuum-surcharge Combined Preloading Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2103-2111. (in Chinese))
[10]
朱正国, 安辰亮, 朱永全, 等. 地铁深竖井土压力理论研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3776-3783.
(ZHU Zheng-guo, AN Chen-liang, ZHU Yong-quan, et al. Theoretical Study on Earth Pressure of Deep Shaft in Subway[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Supp. 2): 3776-3783. (in Chinese))
[11]
孙昌利, 陈富强, 李支令, 等. 超深基坑吊脚桩局部稳定性分析[J]. 长江科学院院报, 2024, 41(10):133-139.
摘要
目前基坑设计中对于吊脚桩预留岩肩的宽度和支护桩的嵌固深度取值大多从对上部支护结构内力及变形的影响角度出发,往往忽略了支护结构底部附近的局部稳定性问题。依托珠江三角洲水资源配置工程超深竖井项目,提出了外倾结构面下或破碎岩体吊脚桩基坑可能存在的3种破坏模式,采用极限平衡法分别给出了不同破坏模式下稳定安全系数的计算方法。同时针对不同破坏模式下,影响稳定安全系数的参数如岩层的埋深、结构面的倾角和力学参数、岩肩宽度、岩肩深度等进行了分析,结果表明外倾结构面倾角、结构面或岩体的力学参数对稳定安全系数影响较大。研究成果可为类似工程提供参考。
(SUN Chang-li, CHEN Fu-qiang, LI Zhi-ling, et al. Local Stability of End-suspended Piles in Ultra-deep Foundation Pits[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(10): 133-139. (in Chinese))
[12]
张振光, 周洁, 徐杰, 等. 悬吊装配式竖井自动化掘进工法地层变形沉降实测及数值模拟分析[J]. 应用基础与工程科学学报, 2024, 32(5):1496-1510.
(ZHANG Zhen-guang, ZHOU Jie, XU Jie, et al. Ground Settlement Measurement and Numerical Simulation Analysis of Vertical Shaft Machine[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1496-1510. (in Chinese))
[13]
闵征辉, 许建聪. 圆形吊脚墙支护设计参数对内力和变形的影响[J]. 人民长江, 2024, 55(增刊1): 211-215.
(MIN Zheng-hui, XU Jian-cong. Influence of Design Parameters of Circular Cantilever Wall Support on Internal Force and Deformation[J]. Yangtze River, 2024, 55(Supp. 1): 211-215. (in Chinese))
[14]
周禹良, 侯公羽, 李生生, 等. 裂隙型类岩竖井注浆帷幕试样开挖卸荷响应试验研究[J]. 岩土力学, 2024, 45(增刊1): 391-404.
(ZHOU Yu-liang, HOU Gong-yu, LI Sheng-sheng, et al. Experimental Study on Unloading Response of Grouting Curtain Sample in Fractured Rock-like Shaft during Excavation[J]. Rock and Soil Mechanics, 2024, 45(Supp. 1): 391-404. (in Chinese))
[15]
姚长春, 于海龙, 张洋. 基于FLAC3D软件求解衬砌强度安全系数的方法[J]. 四川建筑, 2007, 27(2): 115-116.
(YAO Chang-chun, YU Hai-long, ZHANG Yang. Method for Solving Safety Factor of Lining Strength Based on FLAC3D Software[J]. Sichuan Architecture, 2007, 27(2): 115-116. (in Chinese))
[16]
林鹏, 周雅能, 朱晓旭, 等. 大跨径尾水岔洞开挖与衬砌稳定分析[J]. 岩石力学与工程学报, 2010, 29(增刊1):3177-3183.
(LIN Peng, ZHOU Ya-neng, ZHU Xiao-xu, et al. Analysis of Excavation and Lining Stability of Long-span Tailrace Bifurcation Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Supp. 1): 3177-3183. (in Chinese))
[17]
DL/T 5407—2019,水电水利工程竖井斜井施工规范[S]. 北京: 中国电力出版社, 2019.
(DL/T 5407—2019, Specification for vertical shaft and inclined shaft construction of hydroelectric and hydraulic engineering[S]. Beijing: China Electric Power Press, 2019. (in Chinese))
[18]
杨建喜, 陈富强, 杨光华, 等. 圆形地下连续墙环向刚度影响因素及折减系数取值研究[J]. 广东土木与建筑, 2023, 30(5):1-6,41.
(YANG Jian-xi, CHEN Fu-qiang, YANG Guang-hua, et al. Study on the Influencing Factors of Circular Diaphragm Wall Circumferential Stiffness and the Value of Reduction Coefficient[J]. Guangdong Architecture Civil Engineering, 2023, 30(5): 1-6, 41. (in Chinese))
[19]
章光, 朱维申. 参数敏感性分析与试验方案优化[J]. 岩土力学, 1993, 14(1):51-58.
(ZHANG Guang, ZHU Wei-shen. Parameter Sensitivity Analysis and Optimizing for Test Programs[J]. Rock and Soil Mechanics, 1993, 14(1): 51-58. (in Chinese))

基金

中央级科研院所基本科研业务费项目(CKSF20241005/YT)
中央级科研院所基本科研业务费项目(CKSF2023318/YT)
中央级科研院所基本科研业务费项目(CKSF20241024/YT)
国家自然科学基金重点项目(U21A20158)

PDF(8618 KB)

Accesses

Citation

Detail

段落导航
相关文章

/