一种改进麻雀优化算法在岩体结构面分组中的应用

周明哲, 富海鹰, 赵炎炎, 周洋立, 杨涛, 陈垍欢

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (11) : 133-140.

PDF(6014 KB)
PDF(6014 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (11) : 133-140. DOI: 10.11988/ckyyb.20240931
岩土工程

一种改进麻雀优化算法在岩体结构面分组中的应用

作者信息 +

Application of an Improved Sparrow Search Algorithm in GroupingRock Mass Structural Planes

Author information +
文章历史 +

摘要

岩体结构面的聚类分析是进行岩体工程稳定性评价的重要基础。而传统的聚类方法存在对初始聚类中心敏感、分组结果较差且效率低下的问题,因此,本研究提出了一种基于改进麻雀算法(SSA)和K-medoids算法相结合的不连续面聚类算法(KS-SSA)。首先,利用SPM混沌映射初始化麻雀种群;然后,利用改进的SSA算法确定初始聚类中心,以此作为K-medoids算法的初始聚类条件对结构面产状数据进行分组,引入轮廓系数(SC)确定最优聚类组数;最后,通过人工数据和现场实测数据验证了该方法的有效性。并将该方法应用于怒江某岩质边坡的结构面分组。结果表明:新算法对结构面的聚类结果良好,具有较强的鲁棒性。研究成果可以为随机裂隙网络的模拟提供数据支撑。

Abstract

[Objective] The identification and grouping of rock mass structural planes are essential prerequisites for conducting stability analysis. Existing clustering methods are highly sensitive to initial cluster centers, resulting in suboptimal grouping results and relatively low efficiency. To overcome these limitations, this study proposes a rock mass structural plane clustering method based on an improved sparrow search algorithm (KS-SSA). [Methods] First, SPM chaotic mapping was used to initialize the sparrow population, and then the step factor of the SSA was modified to improve the optimization speed. The improved SSA algorithm was used to optimize the initial cluster centers, achieving a global optimal solution. Subsequently, the K-medoids algorithm was applied for the final grouping of structural plane orientation data. Silhouette coefficient (SC) was used to evaluate the clustering performance. Four sets of artificial structural planes were generated using Monte Carlo simulation to validate the proposed algorithm, and comparative analyses were conducted with classical KPSO, FCM, spectral clustering, and traditional sparrow algorithms. [Results] The differences among different algorithms were primarily concentrated at the boundary points. The proposed algorithm could accurately identify all boundary data points, demonstrating good clustering performance with higher recognition accuracy and better clustering results. Using the silhouette coefficient, the structural planes could be accurately divided into four groups, which was consistent with the actual conditions. Furthermore, the sparrow population size and the number of iterations were identified as two key parameters for clustering analysis. Therefore, based on the artificial data, the optimal population size was determined to be 50 by analyzing the variation of fitness curves. Setting the number of iterations to 50 was appropriate while ensuring computational efficiency. The application of the proposed method to the publicly available Shanley dataset further validated its effectiveness. The new algorithm was applied to 201 structural plane data from a rock slope in the Nujiang River. By calculating the silhouette coefficients, three dominant structural plane groups were identified, which were generally consistent with the field investigation results. In addition, the KPSO algorithm was also employed in the field structural plane data analysis, and computational efficiency of the new method was discussed. The KS-SSA algorithm achieved stable clustering results within just 50 iterations, whereas the KPSO algorithm required 110 iterations for convergence. The runtime of the KS-SSA and KPSO algorithms was 45.97 s and 69.95 s, respectively, indicating that the new method had significantly higher computational efficiency. [Conclusion] The KS-SSA algorithm initializes the sparrow population based on SPM chaotic mapping, effectively preventing the clustering results from falling into local optima. Meanwhile, the step factor of the sparrow algorithm is modified, enabling the KS-SSA algorithm to dynamically adjust the step size and improve the optimization speed. Comparative analysis of three case studies demonstrates that compared with traditional algorithms, the proposed method exhibits superior performance in boundary data identification and improved robustness. This study discusses and clarifies the parameter selection and computational efficiency of the new method. The new method demonstrates promising application prospects and can be applied to large-scale data processing and analysis, providing a theoretical basis for the numerical simulation of three-dimensional networks of rock mass structural planes and rock mass stability analysis.

关键词

岩体结构面 / 聚类算法 / 麻雀算法 / K-medoids算法 / 岩体稳定性

Key words

rock mass structural plane / clustering algorithm / sparrow search algorithm / K-medoids / rock mass stability

引用本文

导出引用
周明哲, 富海鹰, 赵炎炎, . 一种改进麻雀优化算法在岩体结构面分组中的应用[J]. 长江科学院院报. 2025, 42(11): 133-140 https://doi.org/10.11988/ckyyb.20240931
ZHOU Ming-zhe, FU Hai-ying, ZHAO Yan-yan, et al. Application of an Improved Sparrow Search Algorithm in GroupingRock Mass Structural Planes[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(11): 133-140 https://doi.org/10.11988/ckyyb.20240931
中图分类号: TU45 (岩石(岩体)力学及岩石测试)   

参考文献

[1]
张化进, 吴顺川, 韩龙强. 基于DBSCAN选择性聚类集成的岩体结构面优势产状分组方法[J]. 岩土力学, 2022, 43(6): 1585-1595.
(ZHANG Hua-jin, WU Shun-chuan, HAN Long-qiang. Dominant Partitioning Method of Rock Mass Discontinuity Based on DBSCAN Selective Clustering Ensemble[J]. Rock and Soil Mechanics, 2022, 43(6): 1585-1595. (in Chinese))
[2]
艾纯明, 陆云, 孙萍萍. 天然岩体结构面产状的动态聚类分组分析[J]. 长江科学院院报, 2023, 40(5): 106-110.
摘要
天然结构面产状分组对于岩体工程有着至关重要的作用。鉴于传统的分组方法存在近直立或近水平产状的结构面分组不准的不足,提出了一种结构面动态聚类分组分析方法。该方法据结构面的倾角和倾向确定聚类中心,以结构面之间夹角大小为依据,经多次迭代计算得到分组结果。将该方法应用于白云鄂博东矿303条结构面分组,并与快速聚类分组法进行对比。结果表明:白云鄂博东矿303条结构面分组后得到了3组优势结构面,其结果与结构面产状等密度图十分吻合。动态聚类分析法不仅计算简便、易于操作,而且弥补了传统方法无法定量等缺点,使得结构面分组结果更加准确,具有较强的实际意义。
(AI Chun-ming, LU Yun, SUN Ping-ping. Dynamic Cluster Grouping Analysis of Occurrence of Structural Plane in Natural Rock Mass[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 106-110. (in Chinese))
[3]
MOOMIVAND H. Effects of Orientation, Frequency, and Number of Sets of Discontinuities on Rock Strength under Triaxial Stresses[J]. Arabian Journal of Geosciences, 2014, 7(12): 5345-5352.
[4]
SHANLEY R J, MAHTAB M A. Delineation and Analysis of Clusters in Orientation Data[J]. Journal of the International Association for Mathematical Geology, 1976, 8(1): 9-23.
[5]
王俊智, 杜朋召, 牛兆轩. 基于K-means聚类方法和Ⅰ Index聚类有效性检验指标的岩体结构面自动分组及应用[J]. 长江科学院院报, 2018, 35(9): 109-113, 120.
摘要
岩体结构面产状数据的统计分组是工程地质、水文地质工作中基础但十分重要的环节。常用的倾向、走向玫瑰花图和极点等密度图人为主观因素大,需借助合适的数学手段对结构面产状数据进行客观划分。基于K-means聚类方法和I Index聚类有效性检验指标,提出了一种岩体结构面自动分组方法,并开发了岩体结构面自动分组程序RDAP。通过与经典文献进行对比,验证了所提分组方法的可靠性。最后,以某工程为例,使用RDAP对实测涌水裂隙资料进行了预处理,初步计算了灌浆钻孔的最佳方位,为工程涌水的防治提供了依据。
(WANG Jun-zhi, DU Peng-zhao, NIU Zhao-xuan. An Auto-classification of Rockmass Discontinuities Based on K-means Cluster Analysis and Cluster Validity Index Ⅰ: Research and Application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 109-113, 120. (in Chinese))
Classifying the orientations of rock discontinuities is a fundamental but critically important routine of engineering geology and hydrogeology. The commonly-used rose diagrams of dip directions and strikes and poles to orientations are subjective. It is appreciated to resort to mathematical approaches. In this paper, an automatic grouping method is proposed based on the algorithms of <i>K</i>-means cluster analysis and cluster validity index <i>I</i>, and a Rock Discontinuities Auto-classification Program (RDAP) is developed. By comparing with Shanley and Mahtab’s result (1976), the reliability of the new grouping method or RDAP is verified. In the end, RDAP is used to cluster the gushing fractures to aid in the selection of the optimum position of grouting drillings of a project, which provides a basis for the prevention and control of water gushing.
[6]
李俊, 胡斌, 祝凯, 等. 一种改进的岩体结构面产状快速聚类分析法[J]. 长江科学院院报, 2016, 33(8): 96-99.
摘要
岩体结构面的优势产状是进行岩体工程研究与分析的基础,传统的玫瑰花图、极点等密度图等方法精度差,其结果往往只是给出优势组数。为了准确地给出结构面的优势产状,本文采用改进的快速聚类分析方法,将结构面产状表示为空间单位上半球体球面上的点,通过构造密度函数求取各数据点加权值对结构面产状进行分类判定。同时,将该方法应用于某矿山运输公路边坡优势结构面的统计分析之中。结果表明采用该方法分析结果可靠,分类合理,能准确得出优势结构面产状,能有效消除孤立点对聚类结果的不利影响。
(LI Jun, HU Bin, ZHU Kai, et al. An Improved Fast Clustering Analysis Method for Attitude of Structural Plane in Rock Mass[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 96-99. (in Chinese))
Dominant attitudes of structural plane in rock mass are fundamental to the research and analysis of geotechnical engineering. Conventional rose diagram and pole isodense diagram are of poor accuracy, just with results of the number of dominant groups. In order to accurately obtain the dominant attitudes of structural plane, we proposed an improved fast clustering analysis method to turn structural plane attitudes into points on hemisphere surface of the unit space. According to structure density functions, we calculated the weighted values of every data point and classified the attitudes of structural planes. Furthermore, we applied the method to the statistical analysis of dominant structural plane of a slope near a mine transportation road. Results show that this method is reliable and reasonable. We can use it to determine the dominant attitudes of structural plane, and effectively avoid adverse effect of isolated points on the clustering result.
[7]
李继明. 岩体结构面产状改进的K均值聚类分析[J]. 长江科学院院报, 2012, 29(9):49-52.
摘要
岩体结构面产状的优势分组是进行岩体工程稳定性评价的基础,极点等密度图、走向玫瑰花图等传统方法比较粗糙,只能给出优势组数,无法准确地给出每一组结构面的优势产状。为弥补传统方法的缺点,采用改进的K均值聚类算法,以结构面的单位法向量表示其产状,以结构面之间所夹锐角对结构面产状进行分类判定。将该方法应用于某采石场岩质边坡结构面优势产状的分析中,结果表明:采用改进的K均值聚类分析方法结果可靠,分类合理,可以准确确定结构面的优势产状。
(LI Ji-ming. Improved K-means Clustering Analysis on Discontinuity Orientations of Rock Mass[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(9):49-52. (in Chinese))
The analysis of dominant orientations of discontinuities is a fundamental work for a further evaluation of the stability of rock mass. By traditional plot methods such as isopycnic diagram and rose diagram, we can only obtain a simple classification of the orientations, but the exact dominant orientations of every set cannot be acquired. An improved <em>K&nbsp; </em>means clustering algorithm is proposed. The orientations of discontinuities are represented by their unit normal vectors, and the included acute angle between two discontinuities is taken as their similarity measure. Data investigated from a rock slope of a quarry is used as a case study. The results of<em> K&nbsp; </em>means clustering algorithm are reliable and reasonable. This method can give the accurate dominant orientations of every set.
[8]
HAMMAH R E, CURRAN J H. Fuzzy Cluster Algorithm for the Automatic Identification of Joint Sets[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 889-905.
[9]
宋腾蛟, 陈剑平, 张文, 等. 基于萤火虫算法的岩体结构面优势产状聚类分析[J]. 东北大学学报(自然科学版), 2015, 36(2): 284-287, 304.
摘要
传统的图形分析方法较为粗糙,且主观因素影响较大,因此提出一种基于萤火虫算法的岩体结构面产状数据划分的新方法.用结构面单位法向量表示结构面的产状,通过单位法向量所夹锐角正弦值来衡量结构面间的距离,并建立模糊目标函数,然后运用萤火虫优化算法搜索最优聚类中心,同时确定组间边界.由于萤火虫算法具有出色的全局寻优能力和较快的收敛速度,使得新算法在解决结构面产状划分问题时非常省时高效.最后应用此算法对怒江松塔坝址区平硐实测结构面产状数据进行优势组划分,结果显示,此方法合理有效,优势明显.
(SONG Teng-jiao, CHEN Jian-ping, ZHANG Wen, et al. Clustering Analysis of Dominative Attitudes of Rock Mass Structural Plane Based on Firefly Algorithm[J]. Journal of Northeastern University (Natural Science), 2015, 36(2): 284-287, 304. (in Chinese))
[10]
王述红, 任艺鹏, 陈俊智, 等. 一种改进鱼群聚类算法在结构面分组中的应用[J]. 东北大学学报(自然科学版), 2019, 40(3): 420-424.
摘要
针对结构面产状常规分类方法存在的不足,提出一种新型的结构面分类算法.基于K-Means算法的结构面分类,将人工鱼群算法(artificial fish swarm algorithm,AFSA)与K-Means算法相结合,建立了AFSA-RSK结构面分类算法.利用鱼群算法强大的寻优能力,代替K-Means算法对结构面产状聚心集进行搜寻,并通过K-Means算法进行聚类.聚类完成后,选择相应参数指标对聚类效果进行评价.针对存在的问题,对鱼群算法的步长和视野进行修正,提高寻找聚心集的精度,动态地调整了聚类过程.将改进后的AFSA-RSK算法与其他算法进行比较,结果表明在迭代速度、聚类精度以及内存占比上,改进后的AFSA-RSK算法都要更优,更适合在结构面分组方面的应用.
(WANG Shu-hong, REN Yi-peng, CHEN Jun-zhi, et al. An Improved Fish Swarm Clustering Algorithm for Structural Grouping[J]. Journal of Northeastern University (Natural Science), 2019, 40(3): 420-424. (in Chinese))
[11]
LI Y, WANG Q, CHEN J, et al. K-means Algorithm Based on Particle Swarm Optimization for the Identification of Rock Discontinuity Sets[J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 375-385.
[12]
CUI X, YAN E C. Fuzzy C-means Cluster Analysis Based on Variable Length String Genetic Algorithm for the Grouping of Rock Discontinuity Sets[J]. KSCE Journal of Civil Engineering, 2020, 24(11): 3237-3246.
[13]
刘铁新, 董自岩, 郭怡宁. 鹈鹕优化算法在岩体结构面分组中的应用[J]. 哈尔滨工业大学学报, 2024, 56(3):117-125.
(LIU Tie-xin, DONG Zi-yan, GUO Yi-ning. Application of Pelican Optimization Algorithm to Clustering Analysis of Rock Mass Structural Plane[J]. Journal of Harbin Institute of Technology, 2024, 56(3):117-125. (in Chinese))
[14]
XUE J, SHEN B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[15]
张奇, 王清, 阙金声, 等. 基于凝聚层次聚类分析法的岩体随机结构面产状优势分组[J]. 岩土工程学报, 2014, 36(8): 1432-1437.
(ZHANG Qi, WANG Qing, QUE Jin-sheng, et al. Dominant Partitioning of Discontinuities of Rock Masses Based on AGNES[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1432-1437. (in Chinese))
[16]
YAN J, CHEN J, ZHAN J, et al. Automatic Identification of Rock Discontinuity Sets Using Modified Agglomerative Nesting Algorithm[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(6): 229.
[17]
王述红, 张紫杉, 王存根, 等. 岩体结构面产状随机分布空间表征[J]. 东北大学学报(自然科学版), 2017, 38(1): 121-125.
摘要
基于不同的结构面产状概率分布函数对工程岩体的结构面进行模拟.通过运用内聚理论对结构面进行组别划分,并分别采用双平均密度分布、双正态密度分布、Fisher分布三种不同的分布形式,结合分布参数的反演,进行随机性结构面模拟.引入辽宁省某边坡工程的计算,运用自主研发的 GeoSMA-3D (geotechnical structure and model analysis-3D)系统进行关键块体搜索,提出离散性评价参数,分析基于不同结构面产状概率分布计算得到关键块体体积的差异.研究发现当离散性评价参数大于临界值时,生成的关键块体体积随离散性评价参数的减小而增大.
(WANG Shu-hong, ZHANG Zi-shan, WANG Cun-gen, et al. Stochastic Spatial Characterization of Structural Plane Occurrence in Rockmass[J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 121-125. (in Chinese))

基金

国家自然科学基金面上项目(50808149)

编辑: 任坤杰
PDF(6014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/