PDF(7215 KB)
《水工混凝土结构设计规范》(NB/T 11011—2022)设计基准期与分项系数等相关问题的探讨
张晓龙, 彭薇薇, 张惠芝
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (11) : 174-182.
PDF(7215 KB)
PDF(7215 KB)
《水工混凝土结构设计规范》(NB/T 11011—2022)设计基准期与分项系数等相关问题的探讨
Discussion on Issues Related to Design Reference Period and Partial Factors in “Code for Design of Hydraulic Concrete Structures” (NB/T 11011—2022)
《水工混凝土结构设计规范》(NB/T 11011—2022)是水电工程钢筋混凝土结构设计的主要依据。然而该标准中有关设计基准期与分项系数等条文在应用中仍存在一些疑难点或不易明确的问题,易造成工程应用偏差。结合笔者团队多年大中型水电站水工结构设计经验,对标准中设计基准期、使用年限、目标可靠指标、可变作用取值、分项系数设置、地震组合等方面的问题进行了分析探讨,发现水电行业的结构目标可靠指标βt相比国内其他行业处于较低水平,相关规范关于统计类可变作用设计基准期的规定缺失,目前的持久状况分项系数取值不能保证水工混凝土结构安全度总是高于房建工程;基于此,提出了提高目标可靠指标、 增加楼面及平台活荷载设计基准期 100 a规定等相应建议措施,以期为工程设计应用及标准修编提供参考。
[Objective] The Code for Design of Hydraulic Concrete Structures (NB/T 11011—2022) is the main reference for the design of reinforced concrete structures in hydropower projects. However, certain provisions in the standard, such as those concerning the design reference period and partial factors, remain difficult to apply or insufficiently clear, which may cause deviations in engineering practice. [Method] Drawing on many years of design experience with hydraulic structures of large and medium-sized hydropower stations, we analyze and discuss the issues related to the design reference period, service life, target reliability index, variable action values, partial factor setting, and seismic combinations. We also conduct cross-industry comparisons with building construction, highway, railway, and port codes, parameter back-analysis, and engineering practice verification. [Result] The structural target reliability index βt in the hydropower sector was set at a relatively low level compared with that of other domestic industries, and that the statistical data on which it was based were outdated, making it difficult to reflect the current reliability level of hydraulic structures. Moreover, relevant provisions on the design reference period of statistical variable actions were missing, while the prescribed live load values for main and auxiliary powerhouse buildings and platforms of hydropower stations were found to match more appropriately with large and medium-sized plants designed for a 100-year reference period. Although the categories of partial factors differ from those in other sectors, the variability of the basic variables and their interactions that these factors account for is essentially consistent, and inclusions and overlaps exist in their conceptual definitions. The current values of partial factors for persistent design situations cannot always ensure that the safety level of hydraulic concrete structures is higher than that of building structures. In addition, treating seismic action solely as an accidental effect is inappropriate, as it ignores the fact that small- and medium-scale earthquakes are now statistically analyzable, which may lead to insufficient reliability in seismic combination limit states. [Conclusions] In response to these problems, we suggest that 1) future revisions of the standard improve the setting of the target reliability index β, differentiate the values of β according to the design reference period, and strengthen reliability research as well as statistical studies for different structure types such as dams, tunnels, powerhouses, and frame structures, so as to gradually achieve differentiated β settings across structure types; 2) specify a single design reference period for hydraulic concrete structures, with 100 years set as the benchmark in line with the service requirements of most major structures and a corresponding β value to match current engineering practice; 3) limit the design reference period, remove the specification of controllable variable actions, and adjust partial factor values to improve the safety level for persistent design situations. Finally, the paper outlines the equivalence relationship between partial factors in hydropower projects and those in other industries. The conclusions are intended to serve as a reference for engineering design practice and for future code revisions.
水工混凝土 / 设计基准期 / 目标可靠指标 / 可变作用 / 分项系数 / 地震组合
hydraulic concrete / design reference period / target reliability index / variable action / partial factor / earthquake combinations
| [1] |
NB/T 11011—2022,水工混凝土结构设计规范[S]. 北京: 中国水利水电出版社, 2022.
(NB/T 11011—2022, Code for Design of Hydraulic Concrete Structures[S]. Beijing: China Water & Power Press, 2022. (in Chinese))
|
| [2] |
GB 55001—2021, 工程结构通用规范[S]. 北京: 中国建筑工业出版社, 2021.
(GB 55001—2021, General Code for Engineering Structures[S]. Beijing: China Architecture & Building Press, 2021. (in Chinese))
|
| [3] |
GB 50153—2008, 工程结构可靠性设计统一标准[S]. 北京: 中国计划出版社, 2009.
(GB 50153—2008, Unified Standard for Reliability Design of Engineering Structures[S]. Beijing: China Planning Press, 2009. (in Chinese))
|
| [4] |
章骏华, 林少波, 陈飞, 等. 常规岛建(构)筑物60年设计基准期荷载分项系数研究[J]. 核科学与工程, 2020, 40(1): 114-121.
(
|
| [5] |
冷福增, 王潮海, 郑继光. 不同设计基准期桥梁结构可靠指标的动态分析[J]. 交通科技, 2016(2):34-37.
(
|
| [6] |
阮怀圣, 李龙安, 屈爱平, 等. 不同设计基准期下地震动峰值加速度取值分析[J]. 世界桥梁, 2013, 41(1):35-38.
(
|
| [7] |
GB 50199—2013, 水利水电工程结构可靠性设计统一标准[S]. 北京: 中国计划出版社, 2014.
(GB 50199—2013, Unified Design Standard for Reliability of Hydraulic Engineering Structures[S]. Beijing: China Planning Press, 2014. (in Chinese))
|
| [8] |
NB/T 10857—2021, 水电工程合理使用年限及耐久性设计规范[S]. 北京: 中国水利水电出版社, 2022.
(NB/T 10857—2021, Code for Design of Rational Service Life and Durability for Hydropower Projects[S]. Beijing: China Water & Power Press, 2022. (in Chinese))
|
| [9] |
NB/T 11012—2022, 水电工程等级划分及洪水标准[S]. 北京: 中国水利水电出版社, 2023.
(NB/T 11012—2022, Standard for Classification and Flood Criteria of Hydropower Proiects[S]. Beijing: China Water & Power Press, 2023. (in Chinese))
|
| [10] |
吴乐乐, 唐曹明, 罗开海, 等. 关于既有建筑评估和改造的目标可靠指标确定方法的探讨[J]. 土木工程学报, 2022, 55(增刊1): 196-202.
(
|
| [11] |
张振浩, 田勇, 梁高明. 考虑混凝土强度随机退化的长寿命斜拉桥主梁目标可靠指标确定方法[J]. 中国公路学报, 2025, 38(1): 199-212.
针对混凝土斜拉桥长寿命设计时的材料参数取值以及PC主梁构件目标可靠指标取值问题,对混凝土强度的随机退化规律、考虑设计使用年限的材料参数取值方法、斜拉桥PC主梁构件考虑材料性能退化的目标可靠指标确定方法进行了研究。首先,基于相关实测数据,对冻融循环下混凝土抗压强度退化过程进行随机过程辨识,结果表明冻融循环下混凝土强度退化规律基本符合Gamma过程,并建立了Gamma过程辨识方法。其次,提出了一种考虑设计使用年限确定所需的材料性能值的方法。基于混凝土抗压强度退化基本服从Gamma过程的结论,获得混凝土性能退化过程在任意时间处的一维概率分布,根据其概率密度函数以α<sup>'</sup>=0.05分位值确定结构服役至设计使用年限时的混凝土强度退化量,从而确定能满足设计使用年限要求的混凝土抗压强度设计值。最后,在考虑混凝土强度退化及钢筋锈蚀、钢筋与混凝土协同工作能力退化的情况下计算斜拉桥PC主梁时变抗弯承载力;运用验算点法计算斜拉桥PC主梁的时变可靠指标,基于服役期可靠指标的退化量,建立了结构长寿命设计条件下考虑设计使用年限的斜拉桥PC主梁目标可靠指标确定方法。研究可为斜拉桥目标可靠指标合理定值提供参考。
(
This study investigated the material parameter values for the long-life design of concrete cable-stayed bridges and target reliability index values for PC main beam components. In addition, it investigated the random degradation law of concrete strength, a method for determining material parameter values considering the design service life, and a calculation method for the target reliability index considering the material performance degradation of cable-stayed bridge PC main beam components. First, based on relevant measured data, a random process identification of concrete compressive strength degradation under freeze-thaw cycles was conducted. The results show that the degradation law of concrete strength under freeze-thaw cycles followed the Gamma process, and a Gamma process identification method was established. Second, a method was proposed to determine the required material performance values by considering the design service life. Based on the conclusion that the degradation of the concrete compressive strength follows the Gamma process, a one-dimensional probability distribution of the concrete performance degradation process at any time was obtained. The concrete compressive strength design value that meets the requirements of the design service life was determined based on the probability density function with <i>α</i><sup>'</sup> = 0.05 percentile value when the structure is in service until the design service life. Finally, the time-varying flexural bearing capacity of the cable-stayed bridge PC main beam was calculated by considering the degradation of concrete strength, rebar corrosion, and collaborative working capacity degradation of the rebar and concrete. The time-varying reliability index of a cable-stayed bridge PC main beam was calculated using the checkpoint method. Based on the degradation of the service period reliability index, a method was established to determine the target reliability index of the cable-stayed bridge PC main beam, considering the design service life under the condition of a long-life design. This study provides a reference for reasonably determining target reliability index values for cable-stayed bridges.
|
| [12] |
龚彦峰, 员健祥, 焦齐柱, 等. 铁路隧道复合式衬砌初期支护可靠性分析[J]. 石家庄铁道大学学报(自然科学版), 2023, 36(1): 84-91, 126.
(
|
| [13] |
陈铁冰, 王书庆, 石志源. 计入结构几何非线性影响时斜拉桥可靠度分析[J]. 同济大学学报(自然科学版), 2000, 28(4):407-412.
(
|
| [14] |
潘永杰, 张玉玲, 刘晓光. 铁路钢桥承载能力极限状态目标可靠指标研究[J]. 铁道工程学报, 2011, 28(7): 68-72.
研究目的:以可靠度理论为基础的极限状态设计法是铁路工程结构设计规范发展的必然,而目标可靠指标是其重要组成部分,随着铁路事业的飞速发展,原有可靠指标校准值的基础条件部分发生了改变,这就需要结合新情况对铁路钢桥的承载能力目标可靠指标进行分析。研究结论:本文得到了新形势下铁路钢桥抗力统计参数,校准了铁路钢桥承载能力极限状态的目标可靠指标,得到了抗力、恒载和活载的分项系数,通过验证,满足由容许应力法向极限状态设计法转轨中安全度继承性的要求; 通过对抗力和荷载参数的灵敏度分析,表明抗力和活载的统计参数对可靠指标影响权重大,而恒载的统计参数和恒载与活载标准值效应比影响权重较小。
(
Research purposes:Limit states design method based on reliability theory is the trend of development for the design code in railway engineering structures,and the target reliability index is an important part among it.With the rapidly development of railway industry,the basic conditions of the original calibrate value have partly changed,which requires analysis of target reliability index for steel railway bridges’ultimate limit states under the new situation.<div>Research conclusions:Under the new situation,resistance statistical parameters of steel railway bridge have been listed.The target reliability indexes of ultimate limit states are calibrated.At the meantime,the partial factors of dead load and live load and resistance are advised,which can meet needs of safety requirements of inheritance in transition from the allowable stress method to limit states design through verification. According to the sensitivity analysis of load and resistance parameters,the statistical parameters of resistance and live load have a large effect on the reliability index,while the parameters of dead load and the ratio of dead load and live load have little effect on it.</div>
|
| [15] |
金伟良, 沈照伟, 李海波. 结构可靠度分析中设计基准期的敏度分析[J]. 中国海洋平台, 2003, 18(5): 15-18.
(
|
| [16] |
GB 50068—2018, 建筑结构可靠性设计统一标准[S]. 北京: 中国建筑工业出版社, 2018.
(GB 50068—2018, Unified Standard for Reliability Design of Building Structures[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese))
|
| [17] |
JTG 2120—2020, 公路工程结构可靠性设计统一标准[S]. 北京: 人民交通出版社, 2020.
(JTG 2120—2020, Unified Standard for Reliability Design of Highway Engineering Structures[S]. Beijing: China Communications Press, 2020. (in Chinese))
|
| [18] |
GB 50216—2019, 铁路工程结构可靠性设计统一标准[S]. 北京: 中国计划出版社, 2019.
(GB 50216—2019,Unified Standard for Reliability Design of Railway Structures[S]. Beijing: China Planning Press, 2019. (in Chinese))
|
| [19] |
GB/T 51394—2020, 水工建筑物荷载标准[S]. 北京: 中国计划出版社, 2020.
(GB/T 51394—2020, Load Standard for Hydraulic Structures[S]. Beijing: China Planning Press, 2020. (in Chinese))
|
| [20] |
DL/T 5602—2021, 户内变电站建筑结构设计规程[S]. 北京: 中国计划出版社, 2021.
(DL/T 5602—2021, Technical Code for Architectural Structure Design of Urban Indoor Substation[S]. Beijing: China Planning Press, 2021. (in Chinese))
|
| [21] |
DL/T 5022—2023, 发电厂土建结构设计规程[S]. 北京: 中国计划出版社, 2023.
(DL/T 5022—2023, Code for Design of Civil Structure of Power Plant[S]. Beijing: China Planning Press, 2023. (in Chinese))
|
| [22] |
姚继涛, 解耀魁. 单个构件当前抗力的信度推断方法[J]. 建筑结构, 2011, 41(5):120-124,12.
(
|
| [23] |
GB 50010—2010, 混凝土结构设计规范[2015年版][S]. 北京: 中国建筑工业出版社, 2015.
(GB 50010—2010,Code for design of concrete structures[2015][S]. Beijing: China Architecture & Building Press, 2015. (in Chinese))
|
| [24] |
钟小平, 金伟良. 钢筋混凝土结构基于耐久性的可靠度设计方法[J]. 土木工程学报, 2016, 49(5):31-39.
(
|
| [25] |
JTG 3362—2018,公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京: 人民交通出版社, 2018.
(JTG 3362—2018,Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S]. Beijing: China Communications Press, 2018. (in Chinese))
|
| [26] |
JTG/T 3371—2022,公路水下隧道设计规范[S]. 北京: 人民交通出版社, 2022.
(JTG/T 3371—2022, Specifications for Design of Highway Underwater Tunnel[S]. Beijing: China Communications Press, 2022. (in Chinese))
|
| [27] |
TB 10092—2017,铁路桥涵混凝土结构设计规范[S]. 北京: 中国铁道出版社, 2017.
(TB 10092—2017,Measuring Tools of the Wheel for Rolling Stock[S]. Beijing: China Railway Publishing House, 2017. (in Chinese))
|
| [28] |
侯建国, 安旭文. 结构可靠度理论在水工结构设计标准中的应用[J]. 长江科学院院报, 2019, 36(8):1-9.
为了推动结构可靠度理论在水工结构设计标准中的应用和发展,系统地总结了笔者近30 a来参加完成的水工结构设计标准按结构可靠度理论修编的成功经验,提出了水工结构设计标准按结构可靠度理论修编的可靠度校准分析方法和目标可靠指标的确定原则;提出了水工结构设计标准分项系数的确定原则与方法;提出了分项系数设计表达式的相当安全系数的概念及其应用;提出了国内外结构设计标准的安全度设置水平比较时应遵循的基本原则和方法等。上述研究成果可供水工结构设计标准按结构可靠度理论进行修编时借鉴与参考。
(
In an attempt to promote the application and the development of the structural reliability theory in design specifications for hydraulic structures, we systematically summarize our three decades of experiences in compiling hydraulic structure design codes which were accomplished and revised in the light of the structural reliability theory.The analytical method of reliability calibration and the principles of determining target reliability index in revising the design codes according to structural reliability theory are proposed. The determining principles and methods for the partial coefficients in design codes are put forward, and the concept and application of equivalent safety factor for the design expression of partial coefficients are presented. Moreover, the basic priciples and methods, which should be followed when comparing the safety level in design codes between China and abroad, are also proposed.The above discussions can be taken as reference when hydraulic structure design specification is revised according to structural reliability theory.
|
| [29] |
GB 50158—2010, 港口工程结构可靠性设计统一标准[S]. 北京: 中国计划出版社, 2010.
(GB 50158—2010, Unified Standard for Reliability Design of Port Engineering Structures[S]. Beijing: China Planning Press, 2010. (in Chinese))
|
| [30] |
NB 35047—2015, 水电工程水工建筑物抗震设计规范[S]. 北京: 中国水利水电出版社, 2015.
(NB 35047—2015, Code for Seismic Design of Hydraulic Structures of Hydropower Project[S]. Beijing: China Water & Power Press, 2015. (in Chinese))
|
| [31] |
赵成刚. 以概率理论为基础的地震作用与其它荷载组合[J]. 哈尔滨建筑工程学院学报, 1993(2): 19-25.
(
|
| [32] |
|
| [33] |
孙得璋, 孙柏涛,
(
|
/
| 〈 |
|
〉 |