多源遥感协同的洞庭湖团洲垸决口险情应急监测方法

姜莹, 向大享, 蒋婕妤, 程学军, 陈喆, 李经纬

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 183-191.

PDF(7662 KB)
PDF(7662 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 183-191. DOI: 10.11988/ckyyb.20240861
水利信息化

多源遥感协同的洞庭湖团洲垸决口险情应急监测方法

作者信息 +

Emergency Monitoring Methods for Breaches in Tuanzhou Embankment of Dongting Lake Based on Multi-source Remote Sensing Coordination

Author information +
文章历史 +

摘要

科学有效地对河湖堤防决口险情进行动态实时监测,为灾后快速评估和防洪应急抢险决策提供技术支撑,具有迫切的现实需求。在分析决口险情监测任务需求的基础上,兼顾时-空-频-谱等约束,构建一种多源遥感协同监测方法,利用模糊多属性决策思路评价不同协同方案在决口险情及引发的次生洪涝灾害任务中的动态监测能力,并通过反演决口宽度、垸区淹没面积等指标,实现多卫星监测组合的统一量化评定及决口险情过程追踪。为验证多源遥感协同监测方法在决口险情及洪涝灾害应急处置中的性能,以“7·5洞庭湖团洲垸湖堤决口险情”为例进行论证分析。结果表明:决口及洪涝场景下分别求解的协同监测方案综合适应度最优,且决口宽度反演值与水文测报值相符,相对误差为0.98%;淹没面积反演值与洪水复演模型计算值大体一致,相对误差为-2.39%,协同监测方案可满足险情应急监测任务对响应时效性、协同性等实际需求。

Abstract

[Objective] Emergency response to breaches has high requirements for timeliness, information accuracy, overall situational awareness, and coordinated observation. The aim of this study is to meet the urgent practical need for dynamic real-time monitoring of breaches, providing technical support for rapid post-disaster assessment and decision-making for flood control emergency rescue. [Methods] Considering the constraints of time, space, frequency, and spectrum, we developed a multi-source remote sensing collaborative monitoring method by using the fuzzy multi-attribute decision-making method to evaluate the dynamic monitoring capabilities of different collaborative schemes in response to breaches and their secondary flood disasters. The breach progression can be traced by inverting indicators such as breach width and inundated area within the embankment area. We further selected the “breach in the Tuanzhou Embankment of the Dongting Lake on July 5” as a case study for experimental analysis and validation. [Results] (1) under the breach monitoring scenario, the derived collaborative monitoring scheme achieved a comprehensive fitness value of 0.654. The breach width variation curve exhibited a general consistency with the trend of in-situ hydrological monitoring data. The relative error between the breach width derived from collaborative inversion and hydrological measurement was 0.98%, demonstrating high accuracy suitable for emergency monitoring. (2) The coordination monitoring scheme under the flood monitoring scenario achieved a comprehensive fitness value of 0.591. The inundation area variation curve within the embankment area was overall consistent with the trend of values calculated by the flood re-simulation model, with a relative error of -2.39%. This error primarily stemmed from the fitting accuracy of discrete values derived from multi-source remote sensing inversion and systematic errors in the re-simulation model calculations. [Conclusions] The developed multi-source coordination combination method integrates both the coordination monitoring process and the coordination data inversion, covering the entire monitoring period before, during, after the breach. It accurately reflects the piping and seepage processes and their propagation trends before the occurrence of breaches, thereby addressing the practical needs for timeliness, comprehensiveness, and coordination in responding to breaches and secondary flood disasters. In addition, the effectiveness of the experiments and applications in this study depends on the types and quantities of satellite resources that can be scheduled under emergency monitoring modes, as well as their alignment with monitoring task requirements. The more satellite resources involved in coordination and evaluation, the higher the monitoring frequency and coverage cycle can be increased, potentially improving the comprehensive fitness value.

关键词

多源遥感协同 / 应急监测 / 洞庭湖团洲垸 / 决口险情 / 洪涝灾害 / 模糊多属性决策

Key words

multi-source remote sensing coordination / emergency monitoring / Tuanzhou Embankment in Dongting Lake / breach emergency / flood disaster / fuzzy multi-attribute decision-making

引用本文

导出引用
姜莹, 向大享, 蒋婕妤, . 多源遥感协同的洞庭湖团洲垸决口险情应急监测方法[J]. 长江科学院院报. 2025, 42(10): 183-191 https://doi.org/10.11988/ckyyb.20240861
JIANG Ying, XIANG Da-xiang, JIANG Jie-yu, et al. Emergency Monitoring Methods for Breaches in Tuanzhou Embankment of Dongting Lake Based on Multi-source Remote Sensing Coordination[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 183-191 https://doi.org/10.11988/ckyyb.20240861
中图分类号: TP79 (遥感技术的应用)    TV122 (洪水)   

参考文献

[1]
徐保东, 李静, 柳钦火, 等. 地面站点观测数据代表性评价方法研究进展[J]. 遥感学报, 2015, 19(5): 703-718.
(XU Bao-dong, LI Jing, LIU Qin-huo, et al. Review of Methods for Evaluating Representativeness of Ground Station Observations[J]. Journal of Remote Sensing, 2015, 19(5): 703-718. (in Chinese))
[2]
黄诗峰, 马建威, 孙亚勇. 我国洪涝灾害遥感监测现状与展望[J]. 中国水利, 2021(15): 15-17.
(HUANG Shi-feng, MA Jian-wei, SUN Ya-yong. Situation and Prospect of Flood Disaster Monitoring by Remote Sensing in China[J]. China Water Resources, 2021(15): 15-17. (in Chinese))
[3]
李德仁, 朱欣焰, 龚健雅. 从数字地图到空间信息网格: 空间信息多级网格理论思考[J]. 武汉大学学报(信息科学版), 2003, 28(6): 642-650.
(LI De-ren, ZHU Xin-yan, GONG Jian-ya. From Digital Map to Spatial Information Multi-grid—A Thought of Spatial Information Multi-grid Theory[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 642-650. (in Chinese))
[4]
CHRISTIAN E. Planning for the Global Earth Observation System of Systems (GEOSS)[J]. Space Policy, 2005, 21(2): 105-109.
[5]
陈能成, 张良培. 空天地一体化对地观测传感网的概念与特征[J]. 测绘地理信息, 2015, 40(5): 4-7, 12.
(CHEN Neng-cheng, ZHANG Liang-pei. Concept and Characteristics of Integrated Earth Observation Sensor Web[J]. Journal of Geomatics, 2015, 40(5): 4-7, 12. (in Chinese))
[6]
OBERSTADLER R, HÖNSCH H, HUTH D. Assessment of the Mapping Capabilities of ERS-1 SAR Data for Flood Mapping: a Case Study in Germany[J]. Hydrological Processes, 1997, 11(10): 1415-1425.
[7]
ZOKA M, PSOMIADIS E, DERCAS N. The Complementary Use of Optical and SAR Data in Monitoring Flood Events and Their Effects[J]. Proceedings, 2018, 2(11): 644.
[8]
ZHENG W, SHAO J, GAO H. Songhua River Basin Flood Monitoring Using Multi-source Satellite Remote Sensing Data[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. July 28 - August 2, 2019, Yokohama, Japan. New York: IEEE Press, 2019: 9760-9763.
[9]
张若旭, 李小涛, 江威, 等. 多源雷达遥感协同的鄱阳湖流域洪水淹没历时估算[J]. 中国科学院大学学报, 2023, 40(4):486-495.
(ZHANG Ruo-xu, LI Xiao-tao, JIANG Wei, et al. Estimation of Flood Inundation Duration Using Multi-source Radar Remote Sensing in Poyang Lake Basin[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(4):486-495. (in Chinese))
[10]
段伟芳, 温小乐, 徐涵秋, 等. 基于光学与雷达影像变化检测的2020年鄱阳湖洪灾评估与分析[J]. 地球信息科学学报, 2022, 24(12): 2435-2447.
摘要
利用遥感对地观测技术对2020年夏季鄱阳湖地区发生的洪水灾情进行评估和分析,分别选取Landsat 8卫星4月和 Sentinel-1A雷达卫星7月的影像作为洪水发生前、后的影像,利用遥感专题信息提取、随机森林分类和变化检测技术揭示洪水淹没范围,以及被淹没的主要土地覆盖类型面积,同时结合水文气象和地形数据进行灾情和受灾原因分析。研究结果表明,鄱阳湖2020年洪灾的淹没面积为1961.95 km2,共造成区内110.83 km2建筑用地、760.54 km2耕地、71.59 km2林地、992.02 km2草地和26.97 km2裸地被淹,其中尤以鄱阳县受灾最为严重,其总受灾面积达到514 km2,其次为新建区与余干县,分别达到了330 km2和310 km2。持续2个月的强降雨使得鄱阳湖流域的水位超过了其1998年特大洪水的水位,加上长江水倒灌,湖区地势北高南低,积水不能及时排出,圩堤决口等诸多水文气象和地形因素造成了此次鄱阳湖的特大洪灾。
(DUAN Wei-fang, WEN Xiao-le, XU Han-qiu, et al. Assessment and Analysis of the 2020 Poyang Lake Flood Hazard Based on Optical and Radar Image Assisted Change Detection[J]. Journal of Geo-Information Science, 2022, 24(12): 2435-2447. (in Chinese))
[11]
李德仁, 朱庆, 朱欣焰, 等. 面向任务的遥感信息聚焦服务[M]. 北京: 科学出版社, 2010.
(LI De-ren, ZHU Qing, ZHU Xin-yan, et al. Task-oriented Remote Sensing Information Focusing Service[M]. Beijing: Science Press, 2010. (in Chinese))
[12]
郑重. 成像卫星传感器观测能力度量与规划服务方法研究[D]. 武汉: 武汉大学, 2012.
(ZHENG Zhong. Research on Measurement and Planning Service Method of Imaging Satellite Sensor Observation Ability[D]. Wuhan: Wuhan University, 2012. (in Chinese))
[13]
ZADEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353.
[14]
兰继斌, 徐扬, 刘家忠. 模糊多属性决策的折衷方法[J]. 系统工程与电子技术, 2004, 26(1): 40-43.
(LAN Ji-bin, XU Yang, LIU Jia-zhong. Compromise Method for Fuzzy Multiple Attribute Decision Making[J]. Systems Engineering and Electronics, 2004, 26(1): 40-43. (in Chinese))
[15]
王超, 张馨月, 罗兴, 等. 团洲垸决口水文应急分析简报(第5期)[R]. 武汉: 长江水利委员会水文局, 2024.
(WANG Chao, ZHANG Xin-yue, LUO Xing, et al. Brief Report on Hydrological Emergency Analysis of Tuanzhou Embankment Breach (Issue 5)[R]. Wuhan: Hyrology Bureau of Changjiang Water Resources Commission, 2024. (in Chinese))
[16]
胡德超, 王敏, 毛冰, 等. 洞庭湖团洲垸2024溃堤洪水过程复演[J]. 长江科学院院报, 2024, 41(12):180-188.
摘要
针对洞庭湖团洲垸2024年7·5溃堤洪水,采用湖泊与民垸整体二维水动力数值模拟方法,从宏观过程、细部水流结构等方面全方位复盘团洲垸的溃堤洪水,并开展钱团间堤溃决洪水危险性计算。模型准确计算了溃口内外水位的平衡时间;准确给出了团洲垸溃口流量、溃口内外水位、蓄洪量、淹没面积等随时间的变化过程;准确再现了溃口处的水面跌坎,据此揭示了溃口附近水位低于下游湖区同期水位的原因;绘出了溃口附近水位及流速的平面分布,定量分析了溃口附近水面的“外凹内凸”特征及纵横比降。与实测数据相比,模型的水位计算相对误差在溃堤洪水过程中(除溃决初期)一般在10 cm以内,在溃口内外水位达平衡后降至5 cm以下;流量计算相对误差一般在5%以内,峰值流量相对误差2.5%。模型水量守恒统计误差为0.6%;团洲垸最大进洪量的模型计算值与水文部门基于蓄洪量-水位曲线分析结果的差别为6.8%。在洪水复演的基础上,沿钱团间堤自北向南假定了3个溃口,分别在封堵/不封堵已有团洲垸溃口的条件下,开展钱团间堤的溃堤洪水过程计算。从流场、溃口流量过程、民垸蓄洪量和淹没面积等方面,定量评估了钱团间堤溃堤洪水的危险性。研究结果为洪水情势与风险评估、堤防守护等提供了技术支撑。针对真实溃堤洪水计算所提出的河湖与蓄滞洪区一体化二维模拟、民垸精细建模、试算获得溃口断面地形时间序列的研究方法,取得了良好的模拟效果和精度,该方法可供同类研究借鉴。
(HU De-chao, WANG Min, MAO Bing, et al. Numerical Restoration of the 2024 Dike-break Flood Process at Tuanzhou Township Alongside the Dongting Lake[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(12):180-188. (in Chinese))
[17]
陈喆, 向大享, 姜莹, 等. 基于国产高分三号星座的洪涝灾害应急监测模式研究:以洞庭湖区团洲垸溃口险情为例[J]. 长江科学院院报, 2024, 41(12):189-195,201.
摘要
针对如何在应急条件下开展快速有效的洪涝灾情动态监测预警评估,提出了一种基于时序国产高分三号星座数据的洪涝灾害应急监测模式,探索汛期洪涝溃堤灾前预警、灾中动态监测、灾后损失评估的监测方法和处理流程。基于该工作模式,针对2024年7月5日发生的洞庭湖团洲垸溃口险情,利用溃口决堤前后逐日国产高分三号卫星影像时序数据,迅速开展团洲垸受灾区域应急遥感监测。根据水体提取结果和洪涝受灾前后变化检测结果,发现:决堤发生前一天溃口周围农田区域水体面积明显增大,2024年7月4日上午10时至7月5日上午11时,堤防渗水过程明显;2024年7月6日上午团洲垸基本全部被淹,仅剩主要干道两侧房屋屋顶在水面以上;7月8日至15日,团洲垸呈缓慢退水状态。监测结果表明,基于国产高分三号星座数据可实现高时空分辨率的溃堤前—溃堤中—溃口合拢后团洲垸灾情变化全过程监测,为溃堤灾前预警、灾中应急抢险、灾后损失评估提供有效的数据支撑。
(CHEN Zhe, XIANG Da-xiang, JIANG Ying, et al. Flood Disaster Emergency Monitoring Based on China’s Gaofen-3 Satellite: Application to Tuanzhou Embankment Breach inDongting Lake Area[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(12): 189-195,201. (in Chinese))

致谢

感谢中共湖北省委军民融合发展委员会办公室组织协调数据,感谢国家航天局对地观测与数据中心提供本次洞庭湖区团洲垸溃口应急监测过程中所有卫星数据。

基金

中央级公益性科研院所基本科研业务费项目(CKSF2025727/KJ)
中央级公益性科研院所基本科研业务费项目(CKSF2025194/KJ)
中央级公益性科研院所基本科研业务费项目(CKSF2023403/KJ)
湖南省水利科技项目(XSKJ2022068-12)
湖北省自然科学基金项目(2022CFD173)

PDF(7662 KB)

Accesses

Citation

Detail

段落导航
相关文章

/