基于BP神经网络的城市径流系数对下垫面变化的响应

张琳, 丁兵, 邓金运, 姚仕明, 王家生, 黎礼刚, 汪朝辉

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 32-37.

PDF(4994 KB)
PDF(4994 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 32-37. DOI: 10.11988/ckyyb.20240860
水资源

基于BP神经网络的城市径流系数对下垫面变化的响应

作者信息 +

Response of Runoff Coefficient to Urban Underlying Surface Change Based on BP Neural Network

Author information +
文章历史 +

摘要

在快速城市化的大背景下,城市地区下垫面变化是影响径流过程的重要因素,而影响机制尚待研究。选择武汉市青山区作为典型研究区域,通过遥感技术、GIS分析以及BP神经网络模型等方法,对典型研究时段城市下垫面变化进行了定量评估,并分析了这些变化对径流系数的影响。通过对比分析发现:城市下垫面变化对径流系数具有显著影响,随着建筑用地和道路的增加,径流系数呈现上升趋势,2009—2017年研究区径流系数从0.399增至0.535;而绿地、植被等用地面积的增加则有助于降低径流系数,同时海绵城市建设通过增加强透水地面面积,额外增加雨水调蓄容积,可达到降低径流系数的作用,海绵城市项目实施后,2017年径流系数为0.535,较海绵城市项目实施前降低0.051。研究成果可为城市规划和防洪排涝系统的设计提供科学依据,也可为城市水文循环和水资源管理提供技术支撑。

Abstract

[Objective] Against the background of rapid urbanization, changes in the urban underlying surface constitute a significant factor influencing runoff processes, yet their mechanisms remain inadequately studied. [Methods] Taking Qingshan District of Wuhan City as a representative study area, this paper used remote sensing technology, GIS analysis, and a BP neural network model to quantitatively assess urban underlying surface changes during the typical study period and analyze its impact on the runoff coefficient. [Results] (1) Under urban development, land use in the study area from 2002 to 2017 shifted overall from permeable to impermeable surfaces. Vegetation, rooftops, and other land-use types fluctuated, whereas water bodies shrank year by year. Construction of the sponge city demonstration zone in 2015 slowed this trend. (2) The runoff coefficient was jointly affected by underlying surface changes and rainfall. However, urban rainfall changed little over short timescales, the impervious surface ratio was the dominant factor. As the area ratio of high-runoff land use (e.g., hardened ground) increased and that of low-runoff land use (e.g., vegetation, green space) decreased, the runoff coefficient rose yearly—from 0.399 in 2009 to 0.535 in 2017—showing that land-use change directly altered the runoff coefficient to some extent. (3) After sponge city interventions, the annual runoff coefficient showed a decreasing trend; in 2017 it was 0.535, 0.051 lower than in 2014. [Conclusions] Sponge city construction reduces the runoff coefficient by expanding highly permeable surfaces and adding storage volume, thereby mitigating the adverse impacts of urban development on stormwater regulation capacity. The study offers scientific guidance for urban planning and flood-control drainage system design, and technical support for urban hydrological cycles and water-resource management.

关键词

径流系数 / 下垫面 / BP神经网络模型 / 遥感技术 / 土地利用方式 / 城市规划

Key words

runoff coefficient / underlying surface / BP neural network model / remote sensing technology / land use type / urban planning

引用本文

导出引用
张琳, 丁兵, 邓金运, . 基于BP神经网络的城市径流系数对下垫面变化的响应[J]. 长江科学院院报. 2025, 42(10): 32-37 https://doi.org/10.11988/ckyyb.20240860
ZHANG Lin, DING Bing, DENG Jin-yun, et al. Response of Runoff Coefficient to Urban Underlying Surface Change Based on BP Neural Network[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 32-37 https://doi.org/10.11988/ckyyb.20240860
中图分类号: TV21 (水资源调2查与水利规划)    X24 (人类、资源、能源与环境的关系)   

参考文献

[1]
张丽平, 孙英君, 赵培华, 等. 基于地理国情数据的城市土地利用变化与地表降雨径流关联分析[J]. 国土与自然资源研究, 2024(1):32-37.
(ZHANG Li-ping, SUN Ying-jun, ZHAO Pei-hua, et al. Correlation Analysis of Urban Land Use Change and Surface Rainfall Runoff Based on Geographical National Conditions Data[J]. Territory & Natural Resources Study, 2024(1): 32-37. (in Chinese))
[2]
苏定江, 刘希, 董佳, 等. 海绵城市年径流污染总量削减率定义及计算方式探讨[J]. 中国给水排水, 2023, 39(24): 93-99.
(SU Ding-jiang, LIU Xi, DONG Jia, et al. Definition and Calculation Method of Total Annual Runoff Pollutant Reduction Rate in Sponge City[J]. China Water & Wastewater, 2023, 39(24): 93-99. (in Chinese))
[3]
温达文, 杨建涛, 王森, 等. 海绵城市年径流总量控制率指标分解探析[J]. 人民珠江, 2023, 44(12):80-86,100.
(WEN Da-wen, YANG Jian-tao, WANG Sen, et al. Analysis of the Decomposition of the Annual Runoff Volume Control Rate Index in Sponge Cities[J]. Pearl River, 2023, 44(12): 80-86,100. (in Chinese))
[4]
余胜男, 樊仕宝, 张玉英. 城市化发展背景下缺资料地区径流量分析[J]. 水利规划与设计, 2023(11): 107-111.
(YU Sheng-nan, FAN Shi-bao, ZHANG Yu-ying. Analysis of the Runoff in Regions with Scarce Data under the Background of Urbanization Development[J]. Water Resources Planning and Design, 2023(11): 107-111. (in Chinese))
[5]
刘宏志. 植被和降雨类型对地表径流和土壤侵蚀的影响研究[J]. 陕西水利, 2023(10): 112-114.
(LIU Hong-zhi. Effects of Vegetation and Rainfall Types on Surface Runoff and Soil Erosion[J]. Shaanxi Water Resources, 2023(10): 112-114. (in Chinese))
[6]
梅超, 石虹远, 李瑞栋, 等. 基于数值试验的降雨径流过程对不透水面空间分布的响应分析[J]. 水资源保护, 2024, 40(1):86-92.
(MEI Chao, SHI Hong-yuan, LI Rui-dong, et al. Analysis of the Response of Rainfall-Runoff Process to the Spatial Distribution of Impervious Surfaces Based on Numerical Experiments[J]. Water Resources Protection, 2024, 40(1):86-92. (in Chinese))
[7]
赵源媛. 辽东无径流资料山区小流域设计径流系数计算模型的应用[J]. 水利技术监督, 2023, 31(6): 143-146.
(ZHAO Yuan-yuan. Application of Runoff Coefficient Calculation Model for Small Watershed in Mountainous Areas without Data in Eastern Liaoning Province[J]. Technical Supervision in Water Resources, 2023, 31(6): 143-146. (in Chinese))
[8]
桂海娇, 张翔, 王瑶, 等. 改进的径流系数法在城市小流域设计洪水中的应用研究[J]. 武汉大学学报(工学版), 2023, 56(8):978-986.
(GUI Hai-jiao, ZHANG Xiang, WANG Yao, et al. Application of Improved Runoff Coefficient Method in Design Flood Estimation for Small Urban Watersheds[J]. Engineering Journal of Wuhan University, 2023, 56(08): 978-986. (in Chinese))
[9]
张力元. 快速城市化地区生态水文模型的构建及应用[D]. 郑州: 华北水利水电大学, 2023.
(ZHANG Li-yuan. Construction and Application of Eco-hydrological Model in Rapidly Urbanized Areas[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023. (in Chinese))
[10]
万思思, 王炳亮, 石慧群. 基于SWAT模型径流模拟的苦水河流域水文要素研究[J]. 绿色科技, 2023, 25(10):242-247.
(WAN Si-si, WANG Bing-liang, SHI Hui-qun. Research on Hydrological Elements of Kushui River Basin Based on SWAT Model Runoff Simulation[J]. Journal of Green Science and Technology, 2023, 25(10): 242-247. (in Chinese))
[11]
沈黎达. 城市复杂下垫面子汇水区划分及其对径流过程影响的模拟研究[D]. 杭州: 杭州师范大学, 2023.
(SHEN Li-da. Simulation Study on the Subdivision of Sub-catchment Area in Urban Complex Underlying Surface and Its Impact on Runoff Process[D]. Hangzhou: Hangzhou Normal University, 2023. (in Chinese))
[12]
李显鸿, 崔松云, 郭财秀, 等. 松华坝流域植被覆盖度变化对区域径流量的驱动响应关系[J]. 水利规划与设计, 2023(1):47-50,63.
(LI Xian-hong, CUI Song-yun, GUO Cai-xiu, et al. The Driving Response Relationship between Vegetation Coverage Change and Regional Runoff in Songhuaba Watershed[J]. Water Resources Planning and Design, 2023(1): 47-50,63. (in Chinese))
[13]
燕超, 胡海波, 徐晓梅, 等. 模拟降雨条件下城市下垫面径流系数变化规律[J]. 中国水土保持科学(中英文), 2022, 20(5):24-30.
(YAN Chao, HU Hai-bo, XU Xiao-mei, et al. Variation of Runoff Coefficient of Urban Underlying Surface under Simulated Rainfall Conditions[J]. Science of Soil and Water Conservation (Chinese and English Edition), 2022, 20(5):24-30. (in Chinese))
[14]
殷书梅, 龚莉, 张翔. 快速城市化流域综合径流系数确定方法比较研究[J]. 人民长江, 2022, 53(8): 87-93.
(YIN Shu-mei, GONG Li, ZHANG Xiang. Comparative Study on Determination Method of Watershed Comprehensive Runoff Coefficient under Rapid Urbanization Backgound[J]. Yangtze River, 2022, 53(8): 87-93. (in Chinese))
[15]
王思思, 侯爽, 王榕. 城市绿地产流影响因素与径流系数取值的多方法比较[J]. 环境工程, 2021, 39(12): 84-90, 242.
(WANG Si-si, HOU Shuang, WANG Rong. A Multi-method Comparison of Influencing Factors and Value of Runoff Coefficient of Urban Green Space in Beijing[J]. Environmental Engineering, 2021, 39(12): 84-90, 242. (in Chinese))

基金

国家重点研发计划项目(2022YFC3202601)

PDF(4994 KB)

Accesses

Citation

Detail

段落导航
相关文章

/