利用核磁共振技术研究养护条件对水工混凝土抗冻性能的影响

周小燕, 孙彦梅, 代薇, 杨淘, 张芮瑜, 蔡君怡, 秦小枫, 陈俊豪

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 157-164.

PDF(7379 KB)
PDF(7379 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 157-164. DOI: 10.11988/ckyyb.20240854
水工结构与材料

利用核磁共振技术研究养护条件对水工混凝土抗冻性能的影响

作者信息 +

Effects of Curing Conditions on Freeze-Thaw Resistance of Hydraulic Concrete by Magnetic Resonance Technology

Author information +
文章历史 +

摘要

为研究不同温湿度养护条件对混凝土抗冻性能的影响,采用核磁共振技术(NMR)对冻融循环作用下混凝土的内部孔隙参数进行测试。结果显示,混凝土相对动弹性模量在20 ℃-95%RH养护条件下经历300次冻融循环后基本平稳发展,而3 ℃-50%RH和10 ℃-70%RH养护条件下分别在200次和150次时出现急剧劣化趋势。养护温湿度不足导致混凝土内部没有足够的水化产物填充原始孔隙,随着冻融循环作用的进行,当混凝土内部受到渗透压力和冻胀压力时,不同类型孔隙之间会出现破坏、贯通,甚至在界面过渡区产生新的微小裂隙,从而使得孔隙率持续增加,其中小孔和中孔比例变化不大,而大孔和微裂隙明显增加。以相对动弹性模量为损伤变量得出不同冻融周期后的累积损伤,分析冻融损伤试验结果和损伤模型计算结果,累积损伤与循环次数的拟合曲线的决定系数均在0.98以上,表明微裂隙占比在冻融循环作用下的增长比相对动弹模损失率更敏感。

Abstract

[Objective] This study aims to investigate the effects of different temperature and humidity curing conditions on the freeze-thaw resistance of concrete, and to conduct freeze-thaw cycle tests on cured specimens for quantitative analysis of mechanical properties and internal micropore structure. [Methods] Nuclear magnetic resonance technology (NMR) was used to measure internal pore parameters of concrete under freeze-thaw cycles and to study the evolution of pore distribution with the increasing number of cycles. Based on the NMR test results, the proportions of different pore categories and the changes in porosity during the freeze-thaw cycles were analysed dynamically. [Results] Compared with concrete cured at 20 ℃-95 % RH, whose relative dynamic modulus of elasticity remained generally stable after 300 cycles, concretes cured at 3 ℃-50% RH and 10 ℃-70% RH deteriorated sharply after 200 and 150 cycles, respectively, indicating that insufficient curing temperature and humidity led to complete hydration reactions, thereby severely affecting concrete durability. After different numbers of freeze-thaw cycles, the T2 relaxation time distributions of concrete exhibited good continuity, with the overall pattern consisting of three parts: small pores, medium pores, and large pores (micro-cracks). However, for concrete cured under insufficient conditions, the third peak became markedly pronounced because the reduced temperature and humidity altered the distribution and connectivity of internal pores and micro-cracks, and the freeze-thaw cycles further increased the number of large pores and micro-cracks. According to porosity measurements and pore distribution characteristics, insufficient curing temperature and humidity resulted in inadequate hydration products filling the original pores, resulting in increased porosity. As the freeze-thaw cycles progressed, when subject to osmotic and frost-heave pressures, different pore types suffered damage and interconnection, and new micro-cracks even formed in the interfacial transition zone, causing porosity to increase continuously. Based on the freeze-thaw damage test results, the cumulative damage after different freeze-thaw periods was obtained using the relative dynamic modulus of elasticity as the damage variable. Comparison between test results and the established damage model yielded correlation coefficients all greater than 0.98, and a concrete freeze-thaw damage model was developed using the Boltzmann equation. [Conclusions] Analysis of the relationship between freeze-thaw cycles and cumulative damage shows that as the number of freeze-thaw cycles increases, internal cracks propagate and permeability intensifies, resulting in continuous accumulation of macroscopic damage. Investigating the freeze-thaw damage process of concrete under different curing conditions not only helps improve macroscopic mechanical properties and durability performance by optimising pore structure but also reveals the meso-scale damage evolution mechanism of hydraulic concrete under freeze-thaw action.

关键词

水工混凝土 / 养护条件 / 冻融循环 / 核磁共振试验

Key words

hydraulic concrete / curing conditions / freeze-thaw cycle / nuclear magnetic resonance test

引用本文

导出引用
周小燕, 孙彦梅, 代薇, . 利用核磁共振技术研究养护条件对水工混凝土抗冻性能的影响[J]. 长江科学院院报. 2025, 42(10): 157-164 https://doi.org/10.11988/ckyyb.20240854
ZHOU Xiao-yan, SUN Yan-mei, DAI Wei, et al. Effects of Curing Conditions on Freeze-Thaw Resistance of Hydraulic Concrete by Magnetic Resonance Technology[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 157-164 https://doi.org/10.11988/ckyyb.20240854
中图分类号: TU528.36   

参考文献

[1]
张恺, 王茂华, 尹志刚, 等. 冻融循环下混凝土力学性能及孔隙损伤劣化研究[J]. 建筑结构, 2023, 53(增刊2): 1342-1346.
(ZHANG Kai, WANG Mao-hua, YIN Zhi-gang, et al. Study on the Mechanical Properties and Pore Damage Deterioration of Concrete under Freezing-thawing Condition[J]. Building Structure, 2023, 53(Supp. 2): 1342-1346. (in Chinese))
[2]
LI C, WU M, CHEN Q, et al. Chemical and Mineralogical Alterations of Concrete Subjected to Chemical Attacks in Complex Underground Tunnel Environments during 20—36 Years[J]. Cement and Concrete Composites, 2018, 86: 139-159.
[3]
张晓锋, 卢浩, 高渊. 冻融循环下混凝土动态力学性能试验研究[J]. 混凝土, 2023(11): 12-16, 19.
(ZHANG Xiao-feng, LU Hao, GAO Yuan. Experimental Study on Impact Mechanical Properties of Concrete under Freeze-thaw Cycle[J]. Concrete, 2023(11): 12-16, 19. (in Chinese))
[4]
邓祥辉, 梁凯轩, 王睿, 等. 高海拔寒冷地区混凝土抗冻耐久性试验研究[J]. 工程力学, 2023, 40(9):37-47.
(DENG Xiang-hui, LIANG Kai-xuan, WANG Rui, et al. Experimental Study on the Frost Resistance Durability of Concrete in High Altitude and Cold Regions[J]. Engineering Mechanics, 2023, 40(9):37-47. (in Chinese))
[5]
ORAKOGLU M E, LIU J, LIN R, et al. Performance of Clay Soil Reinforced with Fly Ash and Lignin Fiber Subjected to Freeze-thaw Cycles[J]. Journal of Cold Regions Engineering, 2017, 31(4): 04017013.
[6]
JIN L, YU W, DU X, et al. Meso-scale Simulations of Size Effect on Concrete Dynamic Splitting Tensile Strength: Influence of Aggregate Content and Maximum Aggregate Size[J]. Engineering Fracture Mechanics, 2020, 230: 106979.
[7]
JIANG L, NIU D, YUAN L, et al. Durability of Concrete under Sulfate Attack Exposed to Freeze-thaw Cycles[J]. Cold Regions Science and Technology, 2015, 112: 112-117.
[8]
覃源, 薛存, 李遥, 等. 盐冻耦合作用下水工混凝土耐久性及寿命预测[J]. 水力发电学报, 2024, 43(2): 110-122.
(QIN Yuan, XUE Cun, LI Yao, et al. Durability and Lifespan Predictions of Hydraulic Concrete under Salt Freezing Coupling Effect[J]. Journal of Hydroelectric Engineering, 2024, 43(2): 110-122. (in Chinese))
[9]
梁秋群, 陈宣东, 胡祥. 冻融循环下混凝土中氯离子传输机制细观模拟[J]. 硅酸盐通报, 2024, 43(6): 2102-2110.
摘要
基于经典应力水平-疲劳寿命方程,本文提出了以冻融循环次数为自变量的氯离子扩散系数数学表达式,并在此基础上建立了冻融循环下氯离子在混凝土中传输的三维细观数值模型,研究了冻融循环、混凝土细观结构特征、结合效应等因素对氯离子传输行为的影响。研究结果表明,冻融循环可以促进氯离子的扩散,当冻融循环的次数接近极限冻融循环次数时,这种促进作用十分显著。更重要的是,通过模拟混凝土细观结构中氯离子的扩散轨迹,揭示了界面过渡区促进氯离子扩散的机理。最后,通过对氯离子长期扩散性能模拟发现,在靠近侵蚀面区域出现了结合氯离子饱和区域,混凝土失去了对自由氯离子的固化能力,促进了氯离子扩散。
(LIANG Qiu-qun, CHEN Xuan-dong, HU Xiang. Mesoscopic Simulation of Chloride Ion Transport Mechanism in Concrete under Freeze-thaw Cycles[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2102-2110. (in Chinese))
[10]
付文亮, 平丹艳. 养护温度对水工混凝土抗冻融特性影响研究[J]. 水利技术监督, 2024, 32(7):184-186,231.
(FU Wen-liang, PING Dan-yan. Research on Effect of Curing Temperature on Freeze-thaw Resistance of Hydraulic Concrete[J]. Technical Supervision in Water Resources, 2024, 32(7):184-186,231. (in Chinese))
[11]
戈雪良, 柯敏勇, 刘伟宝, 等. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 111-115.
(GE Xue-liang, KE Min-yong, LIU Wei-bao, et al. The Evolution of Freezing Stress in Concrete under Freeze-thaw Condition and Its Influence on Frost Resistance[J]. Materials Reports, 2024, 38(12): 111-115. (in Chinese))
[12]
王志云, 赵琳. 冻融循环对水工混凝土渗透性影响研究[J]. 水利技术监督, 2020, 28(5): 193-195.
(WANG Zhi-yun, ZHAO Lin. Influence of Freeze-thaw Cycles on Hydraulic Concrete Permeability[J]. Technical Supervision in Water Resources, 2020, 28(5): 193-195. (in Chinese))
[13]
TIAN Z, ZHU X, CHEN X, et al. Microstructure and Damage Evolution of Hydraulic Concrete Exposed to Freeze-thaw Cycles[J]. Construction and Building Materials, 2022, 346: 128466.
[14]
MI L, MAO J, LI L, et al. Microstructural Damage and Durability of Plateau Concrete: Insights into Freeze-thaw Resistance and Improvement Strategies[J]. Structures, 2024, 60: 105888.
[15]
李少平, 单俊伟, 刘小芹, 等. 低温环境下硅灰改性煤矸石混凝土孔隙结构演变[J]. 硅酸盐通报, 2024, 43(9): 3262-3272.
摘要
针对低温环境下煤矸石混凝土服役寿命短的问题,本文采用内掺硅灰(SF)的改性方法,对不同水胶比(0.45、0.35、0.25)和SF掺量(0%、5%、10%、15%,质量分数)的煤矸石混凝土试件进行冻融循环试验和核磁共振试验,测试各组试件质量损失率、相对动弹性模量和孔隙结构分布,并分析冻融循环作用下孔隙结构演变对煤矸石混凝土抗冻耐久性的影响。结果表明:经50次冻融循环后,煤矸石混凝土的质量损失率由负转正,水胶比为0.25的试件逐渐发生碱-骨料反应,经75次冻融循环后,SF使相对动弹性模量提高了13.60%~62.98%,掺入SF可以改善煤矸石混凝土的质量损失率、相对动弹性模量及抑制碱-骨料破坏;在冻融过程中胶凝孔(r≤0.01 μm)和细毛细孔(0.01 μm<r≤0.05 μm)逐渐转变为粗毛细孔(0.1 μm<r≤10 μm),粗毛细孔数量是决定冻融破坏是否发生的主要因素,SF掺入后延缓了粗毛细孔增加速率,提高了煤矸石混凝土的抗冻耐久性;建立了基于宏观尺度(相对动弹性模量)与细观尺度(不同孔径积分面积)的冻融损伤模型,考虑不同孔径的细观尺度冻融损伤模型同样适用于煤矸石混凝土,并且当水胶比为0.35、SF掺量为10%时,煤矸石混凝土可在西北地区低温环境下服役4 714 d。
(LI Shao-ping, SHAN Jun-wei, LIU Xiao-qin, et al. Evolution of Pore Structure in Silica Fume Modified Coal Gangue Concrete under Low Temperature Environment[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3262-3272. (in Chinese))
To solve the problem of short service life of coal gangue concrete at low temperature, the freeze-thaw cycle test, and nuclear magnetic resonance test were carried out on the coal gangue concrete specimens with different water-binder ratios (0.45,0.35,0.25), and silica fume (SF) content (0%, 5%, 10%, 15%, mass fraction) by adding SF. The mass loss rate, relative dynamic elastic modulus, and pore structure distribution of each group of specimens were tested, and the influence of pore structure evolution on the frost resistance durability of coal gangue concrete under freeze-thaw cycle was analyzed. The results show that after 50 times freeze-thaw cycles, the mass loss rate of coal gangue concrete changes from negative to positive, and the specimen with water-binder ratio of 0.25 gradually produces alkali-aggregate reaction. After 75 times freeze-thaw cycles, SF increases the relative dynamic elastic modulus by 13.60%~62.98%. The addition of SF can improve the mass loss rate and relative dynamic elastic modulus, and inhibit alkali-aggregate failure of coal gangue concrete. During the freeze-thaw process, gel pores (<i>r</i>≤0.01 μm) and fine capillary pores (0.01 μm<<i>r</i>≤0.05 μm) are gradually transformed into large capillary pores (0.1 μm<<i>r</i>≤10 μm). The number of large capillary pores is the main factor that determines the occurrence of freeze-thaw damage. The addition of SF slows down the increase rate of large capillary pores and improves the anti-freezing durability of coal gangue coarse aggregate. The freeze-thaw damage model based on macro-scale (relative dynamic elastic modulus) and micro-scale (different pore size integral area) is established. The micro-scale freeze-thaw damage model considering different pore size is also suitable for coal gangue concrete. When the water cement ratio is 0.35 and the SF content is 10%, the coal gangue concrete can serve for 4 714 d in low temperature environment in the northwest region.
[16]
甘磊, 刘源, 沈振中, 等. 硫酸盐侵蚀和冻融循环作用下混凝土损伤演化规律[J]. 华中科技大学学报(自然科学版), 2023, 51(11): 134-141.
(GAN Lei, LIU Yuan, SHEN Zhen-zhong, et al. Damage Evolution Law of Concrete under Sulfate Attack and Freeze-thaw Cycle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(11): 134-141. (in Chinese))
[17]
刘方, 蒋伟, 傅少君, 等. 水工混凝土饱水过程水分分布及冻融劣化对比[J]. 长江科学院院报, 2023, 40(7): 152-157.
摘要
为研究水工混凝土吸水水分迁移及冻融劣化规律,对中低热水泥混凝土进行吸水及快速冻融试验, 同时采用核磁共振与工业CT(Computerized Tomography)进行过程监测,探讨分析水工混凝土在吸水过程中水分迁移、分布规律及冻融作用下内部孔隙结构的演化。结果表明,在吸水过程中,中低热水泥混凝土总体含水率持续增加,吸水48 h后基本达到饱和状态,低热水泥混凝土的吸水程度明显高于中热水泥混凝土;吸水时中热水泥混凝土中(0,0.1]μm的水分占比高于低热水泥混凝土,而其他较大尺寸水分占比均低于低热水泥混凝土;冻融期间低热水泥混凝土的总孔隙率和增幅均明显高于中热水泥混凝土;总体上中热水泥混凝土中>10 mm<sup>3</sup>的孔隙占比小于低热水泥混凝土,而其他较小范围孔隙占比大于低热水泥混凝土。
(LIU Fang, JIANG Wei, FU Shao-jun, et al. Moisture Distribution during Water Saturation and Freeze-thaw Deterioration of Hydraulic Concrete[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(7): 152-157. (in Chinese))
[18]
SCHULTE HOLTHAUSEN R, RAUPACH M. Monitoring the Internal Swelling in Cementitious Mortars with Single-sided 1H Nuclear Magnetic Resonance[J]. Cement and Concrete Research, 2018, 111: 138-146.
[19]
WANG R, ZHANG Q, LI Y. Deterioration of Concrete under the Coupling Effects of Freeze-Thaw Cycles and Other Actions: A Review[J]. Construction and Building Materials, 2022, 319: 126045.
[20]
WANG Y, XIE M, ZHANG J. Mechanical Properties and Damage Model of Modified Recycled Concrete under Freeze-thaw Cycles[J]. Journal of Building Engineering, 2023, 78: 107680.
[21]
武海荣, 金伟良, 张锋剑, 等. 关注环境作用的混凝土冻融损伤特性研究进展[J]. 土木工程学报, 2018, 51(8):37-46.
(WU Hai-rong, JIN Wei-liang, ZHANG Feng-jian, et al. A State-of-the-art Review on Freeze-thaw Damage Characteristics of Concrete under Environmental Actions[J]. China Civil Engineering Journal, 2018, 51(8): 37-46. (in Chinese))
[22]
刘西光, 雷永洁, 周佳丽, 等. 冻损梯度对承压混凝土应力-应变关系的影响[J]. 建筑材料学报, 2023, 26(10):1054-1061.
(LIU Xi-guang, LEI Yong-jie, ZHOU Jia-li, et al. Effect of Frozen Damage Gradient on Stress-strain Relationship of Stressed Concrete[J]. Journal of Building Materials, 2023, 26(10):1054-1061. (in Chinese))
[23]
LIU X, YAN Z, WANG D, et al. Corrosion Cracking Behavior of Reinforced Concrete under Freeze-thaw Cycles[J]. Journal of Building Engineering, 2023, 64: 105610.
[24]
ZAHEDI A, KOMAR A, SANCHEZ L F M, et al. Global Assessment of Concrete Specimens Subjected to Freeze-thaw Damage[J]. Cement and Concrete Composites, 2022, 133: 104716.
[25]
CAÑIZO J A, EINAV A, LODS B. On the Rate of Convergence to Equilibrium for the Linear Boltzmann Equation with Soft Potentials[J]. Journal of Mathematical Analysis and Applications, 2018, 462(1): 801-839.
[26]
朱本清, 余红发, 巩旭, 等. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5):169-175.
(ZHU Ben-qing, YU Hong-fa, GONG Xu, et al. Relationship between Bond Strength of Concrete Interface and Meso-mechanical Properties of Interface Transition Zone under Freezing-thawing Action of Deicing Salt[J]. Materials Reports, 2024, 38(5): 169-175. (in Chinese))

基金

中国长江电力股份有限公司技术服务/咨询项目(4223020025)
国家自然科学基金项目(52309170)

PDF(7379 KB)

Accesses

Citation

Detail

段落导航
相关文章

/