多源固废协同固化红砂岩渣土配比及机理研究

温树杰, 黄英豪, 赖光甜

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 111-119.

PDF(7634 KB)
PDF(7634 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 111-119. DOI: 10.11988/ckyyb.20240833
岩土工程

多源固废协同固化红砂岩渣土配比及机理研究

作者信息 +

Mix Ratio and Mechanism of Multi-source Solid-waste Co-curing for Red Sandstone Spoil

Author information +
文章历史 +

摘要

为实现工程弃土资源再利用,达到“以废治废、变废为宝”的目标。以红砂岩渣土为研究对象,采用生石灰、煅烧煤矸石粉、粉煤灰和煤渣粉4种固体废弃物为固化剂,通过单掺和正交试验得出多源固废各材料最优配比,按最优配比对红砂岩渣土进行改良固化,研究不同掺量和龄期下7 d无侧限抗压强度和水稳定性系数变化,最后结合XRD和SEM扫描结果对比改良前后的微观形貌特征,并以此分析固化机理。结果表明:多源固废各材料间交互作用对试样的无侧限抗压强度影响显著,生石灰、粉煤灰、煅烧煤矸石、煤渣粉的最佳配合比为4∶8∶8∶7;红砂岩改良土抗压强度随固化剂掺量增加呈先增后降趋势,最优掺量为12%;研究得到的红砂岩改良土具有良好的力学性能和水稳定性,最优掺量下改良土样的7 d无侧限抗压强度达到1.659 MPa,为素土试样的16倍,水稳定系数提升65.90%;多源固废复合固化剂机理是以石灰为基础的协同固化反应,土体骨架结构随着龄期的增加愈发完善。研究多源固废复合固化剂的作用机理,为后续固化红砂岩渣土研究提供科学参考。

Abstract

[Objective] Extensive red sandstone spoil generated from highway tunnel projects in central-southern China poses significant disposal challenges due to its high water content, susceptibility to slaking and disintegration, low strength, and high compressibility—characteristics that fail to meet subgrade material standards. To realise the goal of “treating waste with waste and turning waste into treasure”, we use quicklime, calcined coal gangue powder, fly ash and cinder powder as multi-source solid-waste curing agents to explore the optimal ratio and mechanism for co-curing red sandstone spoil, providing a basis for resource utilisation. [Methods] Red sandstone spoil was served as the base material, quicklime, calcined coal gangue powder, grade-III fly ash and cinder powder were selected as curing agents, with their chemical compositions determined by X-ray fluorescence spectroscopy. Single-mix tests were conducted to investigate the effect of each curing agent alone on the strength of the red sandstone spoil and to determine appropriate dosage ranges. Then orthogonal experimental design was employed, using 7-day unconfined compressive strength (UCS) as the index to obtain the optimal ratio. Based on the optimal mix ratio, the red sandstone spoil was modified with curing agent dosages of 8%,10%,12%,and 14%,and cured for 3,7,14,and 28 days respectively. Unconfined compressive strength (UCS) was tested. Water stability coefficients were measured through water immersion tests. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were conducted to examine changes in microstructure and mineral phases before and after curing, revealing the stabilization mechanism. [Results] Optimal mix proportions and dosages:the optimal mass ratio was quicklime∶fly ash∶calcined coal gangue∶cinder powder=4∶8∶8∶7. The strength showed an initial increase followed by a decline with increasing total dosage, with 12% total dosage yielding the highest strength. Macro-scale performance improvement: at 12% dosage, 7-day UCS reached 1.659 MPa (16 times that of raw spoil) and 28-day UCS 2.255 MPa. Water stability was significantly improved, with the coefficient reaching 59.37% at 12% and 65.90% at 14%, with strength increasing over time, particularly rapidly between 3-14 days. Microscopic mechanism: XRD analysis showed that the contents of orthoclase and albite decreased in the improved red sandstone spoil, while the diffraction peaks of quartz and calcite were enhanced, indicating that ion exchange and pozzolanic reactions occurred, generating cementitious products such as calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H). SEM observation revealed that the soil particles were loose and porous before improvement, while after improvement, the cementitious products bonded the particles to form a dense skeletal structure, which became more complete with curing age. [Conclusions] The optimal co-curing ratio is quicklime∶fly ash∶calcined coal gangue∶cinder powder=4∶8∶8∶7 at 12% dosage, delivering the best mechanical properties and water stability. The mechanism is a lime-centred synergistic reaction: lime hydration provides an alkaline environment and Ca2+, triggering ion exchange (soil particles changing from potassium/sodium type to calcium type) and pozzolanic reactions (forming cementitious products), while solid waste particles fill pores to reinforce the soil skeleton. This offers an economical and eco-friendly route for red sandstone spoil utilisation, with both engineering and ecological value.

关键词

红砂岩渣土 / 多源固废 / 协同固化 / 正交设计 / 固化机理

Key words

red sandstone spoil / multi-source solid waste / co-curing / orthogonal design / curing mechanism

引用本文

导出引用
温树杰, 黄英豪, 赖光甜. 多源固废协同固化红砂岩渣土配比及机理研究[J]. 长江科学院院报. 2025, 42(10): 111-119 https://doi.org/10.11988/ckyyb.20240833
WEN Shu-jie, HUANG Ying-hao, LAI Guang-tian. Mix Ratio and Mechanism of Multi-source Solid-waste Co-curing for Red Sandstone Spoil[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 111-119 https://doi.org/10.11988/ckyyb.20240833
中图分类号: TU502 (材料性能及试验)   

参考文献

[1]
王学斌, 杨建辉. 红砂岩物理力学性质及其路基压实功研究[J]. 浙江科技学院学报, 2022, 34(6): 551-558.
(WANG Xue-bin, YANG Jian-hui. Study on Physical and Mechanical Properties of Red Sandstone and Its Roadbed Compaction Work[J]. Journal of Zhejiang University of Science and Technology, 2022, 34(6): 551-558. (in Chinese))
[2]
高文华, 许黎, 张宗堂, 等. 干湿循环作用下红砂岩崩解的影响因素研究[J]. 工程地质学报, 2023, 31(5):1597-1604.
(GAO Wen-hua, XU Li, ZHANG Zong-tang, et al. Research on Influencing Factors of Red Sandstone Disintegration during drying-wetting Cycles[J]. Journal of Engineering Geology, 2023, 31(5):1597-1604. (in Chinese))
[3]
刘彩平, 段庆全. 红砂岩三向应力状态下渗透性能的实验研究[J]. 矿业研究与开发, 2009, 29(3): 9-11, 29.
(LIU Cai-ping, DUAN Qing-quan. Laboratory Study of Permeability of Red Sandstone under Three-dimensional Stress[J]. Mining Research and Development, 2009, 29(3): 9-11, 29. (in Chinese))
[4]
JTG D 30—2004, 公路路基设计规范[S]. 北京: 人民交通出版社, 2005.
(JTG D 30—2004, Specifications for Design of Highway Subgrades[S]. Beijing: China Communications Press, 2005. (in Chinese))
[5]
肖翔, 胡冬冬, 何小丽, 等. 改良土的研究现状及展望[J]. 土工基础, 2021, 35(3): 359-364.
(XIAO Xiang, HU Dong-dong, HE Xiao-li, et al. State of the Art Review of Improved Soil[J]. Soil Engineering and Foundation, 2021, 35(3): 359-364. (in Chinese))
[6]
季节, 梁犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66.
(JI Jie, LIANG Ben, HAN Bing-ye, et al. Review on Soil Solidified Technologies in Road Engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. (in Chinese))
[7]
杨爱武, 王韬, 许再良. 石灰及其外加剂固化天津滨海软土的试验研究[J]. 工程地质学报, 2015, 23(5):996-1004.
(YANG Ai-wu, WANG Tao, XU Zai-liang. Experimental Study on Lime and Its Additional Agent to Cure Tianjin Marine Soft Soil[J]. Journal of Engineering Geology, 2015, 23(5): 996-1004. (in Chinese))
[8]
DUTTA T T, SARIDE S. Dynamic Properties of Moderately Expansive Soil Stabilized with Class C Fly Ash[C]// Geo-Chicago 2016. Chicago, Illinois. American Society of Civil Engineers, 2016: 949-958.
[9]
范旭涵, 王炳楠, 汤世豪, 等. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16):112-120.
(FAN Xu-han, WANG Bing-nan, TANG Shi-hao, et al. Study on pH, Conductivity Response and Pore Characteristics of Low Liquid Limit Silt Reinforced by Magnesium Phosphate Cement[J]. Materials Reports, 2024, 38(16):112-120. (in Chinese))
[10]
刘波, 高荣, 何艳清, 等. 冻融作用下水泥改良土未冻水含量及孔隙特征试验研究[J]. 矿业科学学报, 2023, 8(6): 791-802.
(LIU Bo, GAO Rong, HE Yan-qing, et al. Experiment Research on Unfrozen Water Content and Pore Characteristic of Cement Improved Soil under Freeze-thaw Cycle[J]. Journal of Mining Science and Technology, 2023, 8(6): 791-802. (in Chinese))
[11]
HU J, LIU H, REN W, et al. An Experimental Study for Evaluation of Collapsible Loess Roadbed Replacement Method Using Lightweight Soil[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(9): 359.
[12]
祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425-432.
(ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al. Indoor Experimental Research on Characteristics of Improved Red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425-432. (in Chinese))
[13]
陈杰, 朱学英, 付梁, 等. 水泥稳定土干缩性能及其尺寸效应[J]. 水利水电科技进展, 2022, 42(2):114-118.
(CHEN Jie, ZHU Xue-ying, FU Liang, et al. Dry Shrinkage Performance and Size Effect of Cement Stabilized Soil[J]. Advances in Science and Technology of Water Resources, 2022, 42(2):114-118. (in Chinese))
[14]
WANG J, LI X, WEN H, et al. Shrinkage Cracking Model for Cementitiously Stabilized Layers for Use in the Mechanistic-empirical Pavement Design Guide[J]. Transportation Geotechnics, 2020, 24: 100386.
[15]
刘竹, 关大博, 魏伟. 中国二氧化碳排放数据核算[J]. 中国科学: 地球科学, 2018, 48(7): 878-887.
(LIU Zhu, GUAN Da-bo, WEI Wei. Carbon Emission Accounting in China[J]. Scientia Sinica (Terrae), 2018, 48(7): 878-887. (in Chinese))
[16]
ZUBERI M J S, PATEL M K. Bottom-up Analysis of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Swiss Cement Industry[J]. Journal of Cleaner Production, 2017, 142: 4294-4309.
[17]
尹升华, 刘家明, 邵亚建, 等. 全尾砂-粗骨料膏体早期抗压强度影响规律及固化机理[J]. 中南大学学报(自然科学版), 2020, 51(2): 478-488.
(YIN Sheng-hua, LIU Jia-ming, SHAO Ya-jian, et al. Influence Rule of Early Compressive Strength and Solidification Mechanism of Full Tailings Paste with Coarse Aggregate[J]. Journal of Central South University (Science and Technology), 2020, 51(2): 478-488. (in Chinese))
[18]
温亮, 阎长虹, 张政, 等. 水泥-粉煤灰-煤渣-吹填粉细砂混合料强度试验[J]. 煤田地质与勘探, 2019, 47(1): 149-154, 161.
(WEN Liang, YAN Chang-hong, ZHANG Zheng, et al. Test on the Strength of the Backfill Fine Sand Mixture Composed of Cement-fly Ash-cinder[J]. Coal Geology & Exploration, 2019, 47(1): 149-154, 161. (in Chinese))
[19]
MENG Q, QIN Q, YANG H, et al. Effects of High-low Temperature Cycles on the Performance of Coral Aggregate Concrete Based on Field Specimens and Laboratory Accelerated Tests[J]. Construction and Building Materials, 2022, 325: 126596.
[20]
QIN Q, MENG Q, YANG H, et al. Study of the Anti-abrasion Performance and Mechanism of Coral Reef Sand Concrete[J]. Construction and Building Materials, 2021, 291: 123263.
[21]
肖雪军, 鞠宇飞. 煤矸石质固土材料固化土的耐久性试验研究[J]. 煤炭科学技术, 2016, 44(12):202-207.
(XIAO Xue-jun, JU Yu-fei. Study on Durability Experiment of Stabilized Soil of Gangue Sialite Soil Material[J]. Coal Science and Technology, 2016, 44(12): 202-207. (in Chinese))
[22]
方屹, 杨浪, 饶峰, 等. 煤矸石的地质聚合反应资源化利用研究进展[J]. 矿业研究与开发, 2023, 43(12):206-213.
(FANG Yi, YANG Lang, RAO Feng, et al. Research Progress on Resource Utilization of Coal Gangue by Geological Polymerization Reaction[J]. Mining Research and Development, 2023, 43(12):206-213. (in Chinese))
[23]
李光耀, 张振, 叶观宝, 等. 新型土体固化剂加固海底淤泥力学特性研究[J]. 水文地质工程地质, 2022, 49(5):106-111.
(LI Guang-yao, ZHANG Zhen, YE Guan-bao, et al. Mechanical Characteristics of Submarine Silt Stabilized by a Novel Agent[J]. Hydrogeology & Engineering Geology, 2022, 49(5):106-111. (in Chinese))
[24]
张渭军, 王永胜, 马滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264-269.
(ZHANG Wei-jun, WANG Yong-sheng, MA Tao. Experimental Study on the Compression Modulus of Red-bed Soft Rock Improved Soil Based on Orthogonal Design[J]. China Earthquake Engineering Journal, 2022, 44(2): 264-269. (in Chinese))
[25]
朱彦鹏, 王浩, 刘东瑞, 等. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究[J]. 岩土工程学报, 2022, 44(增刊1): 46-51.
(ZHU Yan-peng, WANG Hao, LIU Dong-rui, et al. Experimental Study on Shear Strength of Fluid-solidified Soil of Weathered Sandstone Based on Orthogonal Design[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(Supp. 1): 46-51. (in Chinese))
[26]
JTG E40—2007, 公路土工试验规程[S]. 北京: 人民交通出版社, 2007.
(JTG E40—2007, Test Methods of Soils for Highway Engineering[S]. Beijing: China Communications Press, 2007. (in Chinese))
[27]
JTG E51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京: 人民交通出版社, 2009.
(JTG E51—2009, Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering[S]. Beijing: China Communications Press, 2009. (in Chinese))
[28]
CJ/T 486—2015, 土壤固化外加剂[S]. 北京: 中国标准出版社, 2016.
(CJ/T 486—2015, Soil Stabilizing Admixtures[S]. Beijing: Standards Press of China, 2016. (in Chinese))

基金

江西省“双千计划”创新领军人才资助项目(JXSQ2021003)

PDF(7634 KB)

Accesses

Citation

Detail

段落导航
相关文章

/