卜形岔管冲蚀磨损特性研究

董静, 周王子

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 104-110.

PDF(6674 KB)
PDF(6674 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 104-110. DOI: 10.11988/ckyyb.20240769
水力学

卜形岔管冲蚀磨损特性研究

作者信息 +

Erosion and Wear Characteristics of Y-Shaped Bifurcated Pipes

Author information +
文章历史 +

摘要

卜形岔管在含沙条件下运行易受泥沙颗粒冲蚀磨损破坏,直接威胁管线安全运行。采用数值模拟方法,结合物理模型试验,研究了岔管内部固液两相流动。分析了岔管的磨损特性和关键影响因素,并探索了椭圆弧形倒角对岔管磨损分布的影响机制。结果表明:岔管的主管进口、出口附近磨损较严重,裆部次之,支管最轻;颗粒质量流量对岔管磨损分布影响最大,颗粒冲击速度次之;通过设置椭圆弧型倒角,可顺畅水流运动、降低颗粒作用于管壁的质量流率,从而减轻主管出口和岔管裆部的磨损,相应位置的平均磨损量较圆弧形倒角岔管分别降低了22.26%、21.03%;数值模拟结果与试验结果吻合良好,证明了数值模拟方法的可靠性。研究成果可为岔管设计提供参考。

Abstract

[Objective] Designing the shape of bifurcated pipes has long been a focus in water diversion projects. Current research on the erosion of pipes by sediment-laden flows remains limited, and studies specifically on the erosion and wear of Y-shaped bifurcated pipes are even rarer. This study aims to investigate the erosion and wear characteristics of Y-shaped bifurcated pipes and optimize their shape. [Methods] We employed numerical simulation and physical model experiments to investigate the solid-liquid two-phase flow within Y-shaped bifurcated pipes during the standalone operation of the main pipe. The influence of an elliptical arc chamfer scheme on the hydraulic and wear characteristics of the bifurcated pipe was explored. The numerical simulation results demonstrated strong consistency with the experimental data, validating the reliability of the numerical simulation method. [Results] (1) During standalone operation of the main pipe, compared with the bifurcated pipe with a circular arc chamfer, the bifurcated pipe with an elliptical arc chamfer had a more open space and gradual variations in the flow cross-section, resulting in smoother internal flow patterns. Its head loss coefficient was smaller, reduced by 6.9% compared to the circular arc chamfer pipe. The local low-pressure distribution at the bifurcation angle significantly improved, and the minimum pressure increased by 1.47 m water head compared with the circular arc chamfer bifurcated pipe, indicating that the elliptical arc chamfer bifurcated pipe could effectively improve the low-pressure distribution and enhance the bifurcated pipe’s cavitation resistance. (2) When the main pipe operated independently, the wear on the bifurcated pipe was most severe near the inlet and outlet of the main pipe, followed by the crotch area, while the branch pipe area experienced the least wear. The particle mass flow rate had the greatest impact on the wear distribution of the bifurcated pipe, followed by the particle impact velocity. By adopting an elliptical arc chamfer, the water flow could move smoothly, and the mass flow rate of particles acting on the pipe walls was reduced, thereby mitigating wear at the main pipe outlet and the crotch area of the bifurcated pipe. The average wear at the corresponding positions was reduced by 22.26% and 21.03%, respectively, compared to the circular arc chamfer bifurcated pipe. [Conclusions] During standalone operation of the main pipe, compared with bifurcated pipes with a circular arc chamfer, bifurcated pipes with an elliptical arc chamfer demonstrate a 1.47 m water head increase in minimum pressure and significant reduction in abrasion at the main pipe outlet and the crotch area. These findings indicate that elliptical arc chamfer bifurcated pipes effectively enhance both cavitation resistance and abrasion resistance of bifurcated pipes, providing valuable references for bifurcated pipe design.

关键词

卜形岔管 / 冲蚀磨损 / 倒角形状 / 数值模拟 / 物理模型试验

Key words

Y-shaped bifurcated pipe / erosion and wear / chamfer shape / numerical simulation / physical model test

引用本文

导出引用
董静, 周王子. 卜形岔管冲蚀磨损特性研究[J]. 长江科学院院报. 2025, 42(10): 104-110 https://doi.org/10.11988/ckyyb.20240769
DONG Jing, ZHOU Wang-zi. Erosion and Wear Characteristics of Y-Shaped Bifurcated Pipes[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 104-110 https://doi.org/10.11988/ckyyb.20240769
中图分类号: TV131 (水力理论、计算、实验)   

参考文献

[1]
闫霞, 周银军, 姚仕明. 长江源区河流地貌及水沙特性[J]. 长江科学院院报, 2019, 36(12): 10-15.
摘要
长江源区河网密布,多数河流仍处于自然演变过程中,河谷地貌保存完整。基于实地踏勘资料,结合 SRTM3 DEM 对长江源区部分河流河谷地貌及水沙特性进行了分析。研究河流涵盖长江北源楚玛尔河、正源沱沱河、南源当曲、干流通天河及支流布曲、尕尔曲。根据河谷形态及河流地貌,可将这些河段归纳为3类:高原冲积型、丘陵坦谷型和高山峡谷型。其中:高原冲积型河道平面多呈游荡或多股分汊;丘陵坦谷型河道平面呈单一或分汊态势;高山峡谷型河道则为单一河道。研究时段内,长江源3个源头中,当曲流量最大,沱沱河流量大于楚玛尔河;输沙量则表现为沱沱河最大、楚玛尔河其次,当曲最小。泥沙分析发现:平面呈游荡状态的河流,其泥沙特征与其他河型有明显不同,具有悬移质含沙量大、粒径粗且均匀,床沙粒径较细的特点。相关分析显示河道宽度与水流含沙量呈正相关关系,初步说明了游荡河型产生的原因。
(YAN Xia, ZHOU Yin-jun, YAO Shi-ming. Landform and Characteristics of Flow and Sediment of Rivers in Source Region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(12): 10-15. (in Chinese))
Characterized by various types of valley landscape, the source region of Yangtze River is densely covered by river networks, most of which are still in the process of natural evolution. In this paper, landform in the source region of Yangtze River is investigated based on SRTM3 DEM data of some representative river reaches, inclusive of Chumaer River, Tuotuo River, Dangqu River, Tongtian River, Buqu River, and Gaer River. Water and sediment characteristics are also analyzed from the observed data. According to the river valley shape and river landform, the river channel in the source region can be divided into three types: alluvial plateau, hilly valley, and alpine valley, among which the alluvial plateau is mostly featured by wandering or multiple branches, the hilly valley by single or branching plane form, and the alpine valley by single channel. Among the three source rivers, i.e. the south, north, and due sources, the discharge of Dangqu River (the south source) is the largest, and that of Chumaer River is the smallest; sediment discharge of Tuotuo River is the largest, followed by that of Chumaer River and Dangqu River in sequence. Moreover, suspended sediment in all the wandering river reaches, which is coarser and more uniform, is larger in amount than in straight, curved, or branched river reaches; the width of river channel is positively correlated with the sediment concentration of water flow, which preliminarily explains the causes of alluvial river formation. <br/><br/>
[2]
陈鹏, 金中武, 周银军, 等. 2012—2021年长江源区水沙变化特征调查分析[J]. 长江科学院院报, 2023, 40(10):180-185.
摘要
长江源区地处青藏高原,气候条件恶劣,受技术条件限制,有关江源地区河流径流输沙资料较少。为了探究江源地区河流径流输沙情况,基于2012—2021年间水文站实测资料和14个野外观测点数据,分析了长江源区河流水沙时空变化特征。结果表明:①长江源区径流量与降水量、温度显著相关,输沙量与径流量相关系数达0.842,与降水量相关系数为0.610;②受气温、降水等因素影响,长江源区河流径流输沙呈现明显的空间分布差异,其中2018年、2020年、2021年同期流量较大,含沙量则在2019年6月最大;③长江源区各考察点悬沙中值粒径总体呈现增大趋势,床沙中值粒径普遍较大,通天河干流、布曲、尕尔曲床沙中值粒径最大,各河段年际间变化规律不一致。研究成果可对无资料地区河流的径流输沙规律认识提供参考,为长江源区河流保护提供技术支撑。
(CHEN Peng, JIN Zhong-wu, ZHOU Yin-jun, et al. Characteristics of Water and Sediment Changes in the Source Region of Yangtze River from 2012 to 2021[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(10):180-185. (in Chinese))
[3]
PENG W, CAO X. Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid-Solid Flow[J]. Powder Technology, 2016, 294: 266-279.
[4]
范玉. 水沙两相流理论及引水工程管道输沙问题的研究[D]. 天津: 天津大学, 2017.
(FAN Yu. Study on the Theory of Water-sediment Two-phase flow and the Problem of Sediment Transport in the Pipeline of Water Diversion Project[D]. Tianjin: Tianjin University, 2017. (in Chinese))
[5]
李美求, 刘方, 张昆, 等. 管道冲蚀液-固数值模拟的研究进展[J]. 科学技术与工程, 2023, 23(34): 14497-14506.
(LI Mei-qiu, LIU Fang, ZHANG Kun, et al. Advances in Liquid-solid Numerical Simulation of Pipeline Erosion[J]. Science Technology and Engineering, 2023, 23(34): 14497-14506. (in Chinese))
[6]
董志勇, 孙金阳, 李宇航, 等. 含沙量对高速水流空蚀影响的试验研究[J]. 水力发电学报, 2021, 40(10): 10-18.
(DONG Zhi-yong, SUN Jin-yang, LI Yu-hang, et al. Experimental Study of Effects of Sediment Concentration on Cavitation Erosion in High Velocity Flows[J]. Journal of Hydroelectric Engineering, 2021, 40(10): 10-18. (in Chinese))
[7]
常英杰, 吴爱祥, 阮竹恩, 等. 含粗骨料膏体输送管道磨损机理及参数优化[J]. 中南大学学报(自然科学版), 2024, 55(1): 307-316.
(CHANG Ying-jie, WU Ai-xiang, RUAN Zhu-en, et al. Wear Mechanism and Parameters Optimization of Coarse Aggregate-containing Paste Transport Pipes[J]. Journal of Central South University (Science and Technology), 2024, 55(1): 307-316. (in Chinese))
[8]
DET N V. Recommended Practice RP O501: Erosive Wear in Piping Systems: DNV RP O501[R]. Oslo: Det Norske Veritas, 2007: 1-28.
[9]
郭沫川, 谭玉叶, 楚立申, 等. 某铁矿管道自流输送分析及管道磨损研究[J]. 矿冶工程, 2022, 42(5):39-43.
摘要
对某铁矿充填系统的管流输送进行了输送参数确定及管道磨损研究,采用经验公式得出料浆临界流速及运输管道的临界管径,并运用Fluent进行数值模拟分析,找出料浆在输送过程中对输送管道磨损较为严重的部位。结果表明,铁矿料浆质量浓度62%~68%时,临界流速0.806~0.831 m/s、输送管道直径0.207~0.209 m条件下可实现自流输送;料浆流动过程中速度与压力最大值集中在管道中心线附近,但在各拐点处的管段料浆流速与压力会产生突增,且最大值在拐点内侧管壁;在拐点后一段管道内料浆流速与压力值先增大后减小,最大值由靠近下管壁逐渐回到管道中心线附近;整个输送管道中磨损较为严重的部位出现在弯管内侧及其接下来的一段管道的下管壁。
(GUO Mo-chuan, TAN Yu-ye, CHU Li-shen, et al. Analysis of Gravity Flow Pipeline Transportation and Pipeline Wear for an Iron Mine[J]. Mining and Metallurgical Engineering, 2022, 42(5): 39-43. (in Chinese))
The parameters of gravity flow transportation for a backfilling system in an iron mine and the pipeline wear were studied. The critical flow velocity of the slurry and the critical pipe diameter of the transportation pipeline were obtained by using an empirical formula. The numerical simulation analysis was performed with Fluent for finding out the parts seriously worn by the slurry during the transportation. The results show that for the slurry with mass concentration of 62%-68%, the critical flow velocity is 0.806-0.831 m/s and the transportation by gravity can be performed in the pipeline with diameter of 0.207-0.209 m. In the flowing process of the slurry, both the maximum flow velocity and maximum pressure mostly appear near the centerline of the pipeline, but the flow velocity and pressure of the slurry at each bend will increase sharply, with the maximum value appearing on the inside wall of bends. And both of them will increase followed by decrease at the section after the bends, with the maximum value gradually appearing from the area close to the lower pipe wall to the areas near the pipeline&prime;s centerline. The severely worn parts are the inner side of the bends and the lower pipe wall of the following section.
[10]
季楚凌, 杨紫辰, 马树锋, 等. 含砂天然气管道弯管冲蚀磨损特性研究[J]. 管道技术与设备, 2023(4):18-21,37.
(JI Chu-ling, YANG Zi-chen, MA Shu-feng, et al. Study on Erosion Characteristics of Elbow in Natural Gas Pipeline Containing Sand[J]. Pipeline Technique and Equipment, 2023(4): 18-21, 37. (in Chinese))
[11]
王栋. 煤矸石基充填料浆管道输送流致力学响应特性研究[D]. 徐州: 中国矿业大学, 2023.
(WANG Dong. Study on Pipe flow Characteristics of Coal Gangue-based Filling Slurry and Its Flow-induced Mechanical Response Characteristics of Conveying Pipeline[D]. Xuzhou: China University of Mining and Technology, 2023. (in Chinese))
[12]
ELEMUREN R, TAMSAKI A, EVITTS R, et al. Erosion-corrosion of 90° AISI 1018 Steel Elbows in Potash Slurry: Effect of Particle Concentration on Surface Roughness[J]. Wear, 2019, 430: 37-49.
[13]
BABU P S, BASU B, SUNDARARAJAN G. The Influence of Erodent Hardness on the Erosion Behavior of Detonation Sprayed WC-12Co Coatings[J]. Wear, 2011, 270(11/12): 903-913.
[14]
MOLINA N, WALCZAK M, KALBARCZYK M, et al. Erosion under Turbulent Slurry Flow: Effect of Particle Size in Determining Impact Velocity and Wear Correlation by Inverse Analysis[J]. Wear, 2021, 474: 203651.
[15]
DESALE G R, GANDHI B K, JAIN S C. Effect of Erodent Properties on Erosion Wear of Ductile Type Materials[J]. Wear, 2006, 261(7/8): 914-921.
[16]
王静, 李长俊, 吴瑕. 页岩气集输管道弯头气液固三相冲蚀磨损特性研究[J]. 石油机械, 2022, 50(9):137-144.
(WANG Jing, LI Chang-jun, WU Xia. Study on Gas-liquid-solid Erosion Wear of Elbow in Shale Gas Gathering Pipeline[J]. China Petrolenum Machinery, 2022, 50(9):137-144. (in Chinese))
[17]
顾欣欣, 万五一, 张博然. 大变径卜型岔管的水力特性及优化研究[J]. 水力发电学报, 2018, 37(1): 62-69.
(GU Xin-xin, WAN Wu-yi, ZHANG Bo-ran. Hydraulic Characteristics and Optimization of Y-type Pipes with Large Diameter Difference[J]. Journal of Hydroelectric Engineering, 2018, 37(1): 62-69. (in Chinese))
[18]
梁春光, 程永光. 基于CFD的抽水蓄能电站岔管水力优化[J]. 水力发电学报, 2010, 29(3): 84-91.
(LIANG Chun-guang, CHENG Yong-guang. Hydraulic Optimization of Pipe Bifurcation of Pumped-storage Power Station by CFD Method[J]. Journal of Hydroelectric Engineering, 2010, 29(3): 84-91. (in Chinese))
[19]
周彩荣, 伍鹤皋, 石长征. 埋藏式月牙肋钢岔管布置形式选择和承载特性研究[J]. 水力发电学报, 2014, 33(4): 208-213.
(ZHOU Cai-rong, WU He-gao, SHI Chang-zheng. Study on Layout and Load-bearing Characteristics of Embedded Steel Crescent-rib Reinforced Bifurcated Pipe[J]. Journal of Hydroelectric Engineering, 2014, 33(4): 208-213. (in Chinese))
[20]
陈观福, 伍鹤皋, 王金龙. 内加强月牙肋钢岔管新型结构[J]. 长江科学院院报, 2001, 18(1):23-26.
摘要
内加强月牙肋钢岔管具有水头损失小、受力比较均匀、外部无明显突出构造物、洞室开 挖断面较小等优点,因此广泛应用于地下埋藏式压力管道。但布置在地面上的明式月牙肋钢 岔管尚不多见,特别是当钢岔管承受的水头和直径较大时。以某水电工程钢岔管为例,以 满足结构受力和水力条件为前提,优化岔管体形,然后按照钢衬钢筋混凝土岔管结构进行了有 限元计算,得到了一些有益的结论。
(CHEN Guan-fu, WU He-gao, WANG Jin-long. New Type of Steel Bifurcation with Inner Crescent Rib[J]. Journal of Changjiang River Scientific Research Institute, 2001, 18(1):23-26. (in Chinese))
[21]
汪碧飞, 李勇泉, 陈美娟, 等. 埋藏式月牙肋岔管内压分担比研究[J]. 长江科学院院报, 2021, 38(6):123-127.
摘要
采用三维有限元模拟了岔管、回填混凝土与围岩的联合承载体,分析了回填混凝土的塑性性质、岔管与回填混凝土之间的缝隙及围岩力学性能等重要因素对联合承载体的影响。结果表明:考虑回填混凝土的塑性性质后,围岩分担率下降;缝隙宽度超过一定值后,回填混凝土与围岩对岔管约束急剧下降,围岩分担率接近0;围岩力学性能越好,围岩分担率越高;考虑联合承载后,水压试验时岔管可能不足以承担1.25倍的设计压力,应根据岔管钢材允许应力研究水压试验值。研究成果为钢岔管与围岩共同分担内水压力的埋藏式月牙肋岔管的设计提供了参考。
(WANG Bi-fei, LI Yong-quan, CHEN Mei-juan, et al. Sharing Ratio of Internal Pressure of Embedded Crescent-rib Bifurcated Pipe[J]. Journal of Changjiang River Scientific Research Institute, 2021, 38(6):123-127. (in Chinese))
[22]
张军, 吴俊杰, 刘峰. 高水头扬水工程岔管应力分析[J]. 水资源与水工程学报, 2020, 31(5):176-181
(ZHANG Jun, WU Jun-jie, LIU Feng. Stress Analysis of Bifurcated Pipes in a High Head Pumping Project[J]. Journal of Water Resources&Water Engineering, 2020, 31(5):176-181. (in Chinese))
[23]
刘贤才, 张雨萌, 汤怀萱, 等. 姚家平水利枢纽工程钢岔管结构型式选择与CFD研究[J]. 中国农村水利水电, 2024(1): 231-236.
摘要
结合姚家平水利枢纽工程的总体布置,对主电站引水系统对称Y形和非对称Y形月牙肋钢岔管两种结构型式分别进行了三维有限元应力分析和CFD三维流场计算。计算结果表明:对称岔管两腰部位应力分布均匀,肋板尺寸较小;但在主支锥管相贯线内表面A点附近出现较大的应力集中现象,因此对称岔管满足强度所需的管壁厚度大于非对称岔管。在水力学方面,非对称岔管两支管的水头损失不相等,其中与主管同轴线的直支管水头损失最小,斜支管水头损失最大,但没超过对称岔管的0.358 m,说明从岔管部位水头损失和水流流态上看,非对称岔管也稍优于对称Y形岔管。综合考虑岔管结构和水力学特性以及工程地形等因素,建议姚家平水利枢纽工程中主电站引水发电系统选择非对称Y形岔管布置方案。
(LIU Xian-cai, ZHANG Yu-meng, TANG Huai-xuan, et al. Structural Type Selection and CFD Study of Steel Bifurcation in Yaojiaping Water Conservancy Project[J]. China Rural Water and Hydropower, 2024(1): 231-236. (in Chinese))

Combined with the general layout of Yaojiaping Hydraulic Project, this paper carries out three dimensional finite element stress analysis and flow field calculation respectively for the diversion system of the main power station with symmetrical Y shape and asymmetric Y shape crescent ribbed steel bifurcation. The calculation results show that the stress distribution at the two sides of symmetrical bifurcation is relatively uniform and the size of the rib is smaller. However, the stress concentration is greater near point A on the inner surface of the main branch taper intersecting line In terms of hydraulics, the head loss of two branches of asymmetric bifurcated pipe is not equal. The straight branch pipe with the main coaxial line has the smallest head loss, and the inclined branch pipe has the largest head loss, but not more than 0.358m of symmetrical bifurcation. It shows that the asymmetric bifurcation is slightly better than the symmetrical Y-shaped bifurcation in terms of head loss and flow pattern of the bifurcation. Considering the structural and hydraulic characteristics of bifurcation as well as the engineering topography, it is suggested that the asymmetric Y-shaped bifurcation layout should be chosen for the diversion system of the main power station in Yaojiaping Hydropower Project.

[24]
信佰伶. 抽水蓄能电站岔管导流板偏转角优化设计研究[J]. 东北水利水电, 2022, 40(7): 5-7, 71.
(XIN Bai-ling. Optimization Design of Deflection Angle of Diversion Plate of Bifurcation Pipe in Pumped Storage Power Station[J]. Water Resources & Hydropower of Northeast China, 2022, 40(7): 5-7, 71. (in Chinese))
[25]
刘沛清, 屈秋林, 王志国, 等. 内加强月牙肋三岔管水力特性数值模拟[J]. 水利学报, 2004, 35(3): 42-46.
(LIU Pei-qing, QU Qiu-lin, WANG Zhi-guo, et al. Numerical Simulation on Hydrodynamic Characteristics of Bifurcation Pipe with Internal Crescent Rib[J]. Journal of Hydraulic Engineering, 2004, 35(3): 42-46. (in Chinese))
[26]
于航, 章晋雄, 张宏伟, 等. 抽水蓄能电站卜型岔管水力优化[C]//中国水利学会. 中国水利学会2021学术年会论文集. 郑州: 黄河水利出版社, 2021.
(YU Hang, ZHANG Jinxiong, ZHANG Hongwei, et al. Hydraulic Optimization of U-shaped Bifurcated Pipes in Pumped Storage Power Stations[C]// Proceedings of the 2021 Academic Annual Conference of the Chinese Water Conservancy Society. Zhengzhou: Yellow River Water Conservancy Press, 2021. (in Chinese))
[27]
苏凯, 李聪安, 伍鹤皋, 等. 水电站月牙肋钢岔管研究进展综述[J]. 水利学报, 2017, 48(8): 968-976.
(SU Kai, LI Cong-an, WU He-gao, et al. Review of the Crescent-rib Steel Bifurcation of Hydropower Station[J]. Journal of Hydraulic Engineering, 2017, 48(8): 968-976. (in Chinese))
[28]
程丹, 苏凯, 石怡安. 钢筋混凝土岔管结构优化[J]. 水利水电科技进展, 2015, 35(1):89-94.
(CHENG DAN, SU Kai, SHI Yi-an. Structure Optimization on Reinforced Concrete Bifurcation[J]. Advances in Science and Technology of Water Resources, 2015, 35(1):89-94. (in Chinese))
[29]
丁宇明, 胡建国. 岔管过渡带曲面计算机辅助几何设计[J]. 武汉水利电力学院学报, 1990, 23(1): 71-82.
(DING Yu-ming, HU Jian-guo. The Computer Aided Geometric Design (CAGD) on the Curved Surface of Forked Pipe Transition Zone[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1990, 23(1): 71-82. (in Chinese))
[30]
汪洋, 苏凯, 伍鹤皋, 等. 钢筋混凝土岔管锐角区修圆优化的压强分布不均匀性研究[J]. 四川大学学报(工程科学版), 2015, 47(3):6-13.
(WANG Yang, SU Kai, WU He-gao, et al. Study on Asymmetrical Pressure Distribution of Rounding Optimization on Iteinforced Concrete Bifurcation Acute-angle-region[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(3):6-13. (in Chinese))
[31]
任炜辰, 戴熙武, 鲍世虎, 等. 卜形岔管水力特性研究[J]. 水力发电学报, 2022, 41(4): 28-36.
(REN Wei-chen, DAI Xi-wu, BAO Shi-hu, et al. Hydraulic Characteristics of Bifurcated Pipes[J]. Journal of Hydroelectric Engineering, 2022, 41(4): 28-36. (in Chinese))
[32]
LI F X, YUAN L, SHI W L. k-ε Turbulent Model and its Application to the FLUENT[J]. Industrial Heating, 2007, 36(4):13-15.
[33]
WALLACE M S, PETERS J S, SCANLON T J. CFD-based Erosion Modeling of Multi-orifice Choke Valves[C]// Proceedings of ASME 2000 Fluids Engineering Division Summer Meeting, Boston, MA, USA. June 11-15, 2000:945-958.
[34]
HABIB M A, BADR H M, BEN-MANSOUR R, et al. Erosion Rate Correlations of a Pipe Protruded in an Abrupt Pipe Contraction[J]. International Journal of Impact Engineering, 2007, 34(8): 1350-1369.
[35]
SHAH S N, JAIN S. Coiled Tubing Erosion during Hydraulic Fracturing Slurry Flow[J]. Wear, 2008, 264(3/4): 279-290.
[36]
ELGHOBASHI S. On Predicting Particle-laden Turbulent Flows[J]. Applied Scientific Research, 1994, 52(4): 309-329.
[37]
CHITRAKAR S, NEOPANE H P, DAHLHAUG O G. Study of the Simultaneous Effects of Secondary Flow and Sediment Erosion in Francis Turbines[J]. Renewable Energy, 2016, 97: 881-891.
[38]
钱忠东, 王焱, 郜元勇. 双吸式离心泵叶轮泥沙磨损数值模拟[J]. 水力发电学报, 2012, 31(3): 223-229.
(QIAN Zhong-dong, WANG Yan, GAO Yuan-yong. Numerical Simulation of Sediment Erosion in Double-suctions Centrifugal Pump[J]. Journal of Hydroelectric Engineering, 2012, 31(3): 223-229. (in Chinese))

基金

武汉市知识创新专项-曙光计划项目(2023020201020361)
中央级公益性科研院所基本科研业务费项目(CKSF2024997/SL)

PDF(6674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/