沥青心墙堆石坝HECC复合坝基廊道结构应力变形分析

龚亚琦, 颉志强, 李家正

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 144-150.

PDF(6106 KB)
PDF(6106 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (10) : 144-150. DOI: 10.11988/ckyyb.20240762
水工结构与材料

沥青心墙堆石坝HECC复合坝基廊道结构应力变形分析

作者信息 +

Stress and Deformation Analysis of Gallery Structure in Hydraulic Engineered Cementitious Composite Foundation of Asphalt Core Rockfill Dam

Author information +
文章历史 +

摘要

针对深厚覆盖层心墙堆石坝坝基廊道普遍存在的开裂渗漏问题,提出了一种新型水工超高韧性水泥基复合材料HECC(Hydraulic Engineered Cementitious Composites)复合坝基廊道结构,即在廊道应力变形较大位置设置由HECC构成的塑性铰接段,适应廊道变形,从而提高坝基廊道的防裂性能。首先采用三维有限元数值模拟方法,分析坝基廊道的受力变形特性,揭示坝基廊道的开裂机制,明确易裂部位,确定HECC材料的设置位置;然后通过对比设置HECC塑性铰接段前、后廊道的应力分布,验证了HECC廊道的防裂效果。研究结果表明:水压和自重作用下,廊道受力条件复杂,呈现复杂的挠曲变形;距离端部30 m范围内是廊道应力变化剧烈区域,也是廊道的易裂部位;在两端大应力区设置HECC塑性铰接段后,HECC段承受了廊道本体的大部分变形,率先进入塑性状态,通过内部应力的调整,普通廊道段的应力会大幅下降,开裂风险会明显降低。HECC坝基复合廊道结构能有效减小或避免廊道的开裂和渗漏问题。

Abstract

[Objective] This study aims to address the cracking and leakage in the foundation galleries of core rockfill dams situated on deep overburden layers by proposing a novel HECC (Hydraulic Engineered Cementitious Composite) dam foundation gallery structure. The structure involves a plastic hinge section made of the HECC material at large stress positions to adapt to the gallery deformation. [Methods] First, three-dimensional finite element numerical simulation method was adopted to analyze the deformation properties of the gallery, reveal the cracking mechanism of the gallery, identify the prone-to-crack parts, and determine the position of the HECC material. Then, by comparing the stress distribution of the gallery before and after installing the HECC plastic hinge section, the anti-cracking effect of the composite gallery structure was verified. [Results] (1) Under hydrostatic loads and self-weight, the gallery exhibited complex flexural deformation. Overall, the maximum displacement occurred at the center of the riverbed, with deformation gradually decreasing towards the banks, showing distinct reverse bending zones at both ends. (2) For conventional concrete gallery, significant tensile stress zones were primarily located at the ends. Within 30 m of the right end and 35 m of the left end, the tensile stress exceeded the tensile strength of the concrete. This was particularly pronounced in the 10 m to 20 m range from each end, where high levels of tensile stress were observed at the gallery’s crown and sidewalls. (3) In the proposed foundation gallery structure, 20m-long HECC plastic hinge sections were installed at the ends on both the left and right banks. These HECC sections fully entered plastic state, with the maximum equivalent plastic strain remaining within the material’s allowable limits, ensuring that the HECC segments would not leak. (4) As the HECC sections underwent plastic deformation, they accommodated most of the deformation from the main gallery body. Through stress redistribution, the overall stress level in the conventional concrete portion of the gallery was significantly reduced. The area where tensile stress exceeded the design strength in the typical cross-sections of the high-stress zones at the ends was markedly decreased, with a maximum reduction of approximately 70%, thus significantly lowering the risk of cracking. [Conclusions] (1) The regions within 30m of the ends of the foundation gallery in asphalt core rockfill dam are areas of intense stress variation and are prone to cracking. (2) The introduction of HECC plastic hinge sections in these high-stress zones at both ends allows the HECC sections to enter a plastic state first. Through internal stress redistribution, the stress in the conventional gallery sections is substantially reduced. The areas where tensile stress exceeds the design strength in typical cross-sections, especially in the high-stress end zones, are significantly reduced, thereby reducing the risk of cracking. (3) The HECC plastic hinge sections leverages the material’s inherent strain-hardening, ultra-high toughness, crack dispersion, and self-healing properties. This not only ensures the sections themselves remain impermeable but also effectively reduces or prevents cracking and leakage issues in the concrete gallery.

关键词

心墙堆石坝 / 坝基廊道 / 塑性铰接段 / 有限元方法 / 水工超高韧性水泥基复合材料 / 防裂防渗漏

Key words

asphalt core rockfill dam / foundation gallery / plastic hinge / finite element method / HECC / crack and leakage prevention

引用本文

导出引用
龚亚琦, 颉志强, 李家正. 沥青心墙堆石坝HECC复合坝基廊道结构应力变形分析[J]. 长江科学院院报. 2025, 42(10): 144-150 https://doi.org/10.11988/ckyyb.20240762
GONG Ya-qi, XIE Zhi-qiang, LI Jia-zheng. Stress and Deformation Analysis of Gallery Structure in Hydraulic Engineered Cementitious Composite Foundation of Asphalt Core Rockfill Dam[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(10): 144-150 https://doi.org/10.11988/ckyyb.20240762
中图分类号: TV641.4 (堆石坝)   

参考文献

[1]
ICOLD. Asphalt Cores for Embankment Dams[R]. Paris: International Commission on Large Dams, 2018.
[2]
姚福海. 深厚覆盖层上土石坝基础廊道的结构形式探讨[J]. 水力发电, 2010, 36(6): 54-55, 59.
(YAO Fu-hai. Study on Foundation Gallery Structure and Type of Embankment Dam on Heavy Overburden[J]. Water Power, 2010, 36(6): 54-55, 59. (in Chinese))
[3]
冯蕊, 何蕴龙, 曹学兴, 等. 深厚覆盖层上高土石坝坝基廊道安全性研究[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(5): 513-523.
(FENG Rui, HE Yun-long, CAO Xue-xing, et al. Safety of Gallery in High Rockfill Dam on Thick Overburden Layer[J]. Journal of Tianjin University (Science and Technology), 2023, 56(5): 513-523. (in Chinese))
[4]
尤士介, 袁长海, 王林, 等. 瀑布沟水电站坝基廊道结构缝渗水处理[J]. 人民长江, 2011, 42(24):38-40.
(YOU Shi-jie, YUAN Chang-hai, WANG Lin, et al. Water Seepage Treatment of Structural Joints of Dam Foundation Gallery in Pubugou Hydropower Station[J]. Yangtze River, 2011, 42(24):38-40. (in Chinese))
[5]
王晓安, 吕海东, 王平, 等. 深厚覆盖层心墙堆石坝坝基河床廊道结构缝设计[J]. 水资源与水工程学报, 2013, 24(1): 135-137, 146.
(WANG Xiao-an, Hai-dong, WANG Ping, et al. Analysis of Structural Joint Design of Foundation River-bed Gallery for Core Wall Rockfill Dam on Deep Overburden[J]. Journal of Water Resources and Water Engineering, 2013, 24(1): 135-137, 146. (in Chinese))
[6]
郑培溪, 赵静, 崔会东, 等. 硗碛大坝坝基廊道结构缝渗漏原因分析及处理效果[J]. 水电自动化与大坝监测, 2012(2): 72-76.
(ZHENG Pei-xi, ZHAO Jing, CUI Hui-dong, et al. Seepage Causes and Treatment of Structural Joints in Foundation Corridor of Qiaoqi Dam[J]. Hydropower Automation and Dam Monitoring, 2012(2): 72-76. (in Chinese))
[7]
姚文燚. 超声波技术在黄金坪水电站混凝土裂缝检测中的应用[J]. 四川水力发电, 2016, 35(2):6-8.
(YAO Wen-yi. Application of Ultrasonic Technology in Concrete Crack Detection of Huangjinping Hydropower Station[J]. Sichuan Hydropower, 2016, 35(2):6-8. (in Chinese))
[8]
冯蕊, 何蕴龙, 白新革. 高心墙堆石坝坝基廊道受力特性研究[J]. 岩土工程学报, 2017, 39(7): 1241-1250.
(FENG Rui, HE Yun-long, BAI Xin-ge. Stress Characteristics of Foundation Gallery of High Core Wall Rockfill Dam[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1241-1250. (in Chinese))
[9]
冯蕊, 伍小玉, 何蕴龙, 等. 深厚覆盖层上超高心墙堆石坝坝基廊道非线性开裂分析[J]. 四川大学学报(工程科学版), 2015, 47(1): 60-67.
(FENG Rui, WU Xiao-yu, HE Yun-long, et al. Nonlinear Cracking Analysis of Foundation Gallery of High Core Wall Rockfill Dam on Thick Overburden Layer[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1): 60-67. (in Chinese))
[10]
陈刚, 马光文, 付兴友, 等. 瀑布沟大坝基础防渗墙廊道连接型式研究[J]. 四川大学学报(工程科学版), 2005, 37(3): 32-36.
(CHEN Gang, MA Guang-wen, FU Xing-you, et al. Research for the Joint Type by Gallery between Dam Imperious Wall and Core Wall of Pubugou Project[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(3): 32-36. (in Chinese))
[11]
吴梦喜, 余学明, 叶发明. 高心墙堆石坝坝基防渗墙与心墙连接方案研究[J]. 长江科学院院报, 2010, 27(9):59-64.
(WU Meng-xi, YU Xue-ming, YE Fa-ming. Research on Conjoining Scheme for Anti-seepage Wall of High Rockfill Dam with Earth Core[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(9):59-64. (in Chinese))
In the design of high rockfill dams on the deep and thick gravel-sand foundation with earth core, double anti-seepage walls will be more frequently used. The conjoining area of the anti-seepage soil body and the concrete wall is the key part to prevent seepage failure, and the optimization of structural arrangement in this area is the emphasis in a design process. In this paper the process of design scheme of the conjoining area in the Pubugou Rolled Earth-rock Fill Dam is presented, and the research focused on the pore pressure and seepage gradient character of two optimum schemes, i.e. one is that the cutoff wall and the gallery are entirely packed by clay, and the other, those are partially packed on the top by clay. It is indicated that the two schemes are both suitable. Seepage gradient in the conjoined area is inhomogeneous around the concrete structure. Seepage gradient at the top of the structure is much bigger than that at the outlet of the earth core base. Using high plastic clay package only on the top of the concrete structure is favorable to the settlement of the earth core and the construction schedule, so it is recommended to be used in the design.
[12]
苗君, 姜彦作, 何福娟, 等. 高心墙堆石坝坝基廊道结构型式深化研究[J]. 水电能源科学, 2021, 39(10):98-101,180.
(MIAO Jun, JIANG Yan-zuo, HE Fu-juan, et al. Deepening Research on Structural Types of Foundation Gallery of High Core Rockfill Dam[J]. Water Resources and Power, 2021, 39(10):98-101,180. (in Chinese))
[13]
熊堃, 何蕴龙, 伍小玉, 等. 长河坝坝基廊道应力变形特性研究[J]. 岩土工程学报, 2011, 33(11):1767-1774.
(XIONG Kun, HE Yun-long, WU Xiao-yu, et al. Stress and Deformation Behavior of Foundation Gallery of Changheba Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11):1767-1774. (in Chinese))
[14]
LI V C, WANG S, WU C. Tensile Strain-Hardening Behavior of PVA-ECC[J]. ACI Materials Journal, 2001, 98(6): 483-492.
[15]
李家正. 高延性水泥基复合材料在水工结构中的应用构想[J]. 长江科学院院报, 2023, 40(2): 1-6, 26.
摘要
高延性纤维增强水泥基复合材料(ECC) 最早由美国密歇根大学Li教授于20世纪90年代设计提出,近年来在工业与民用建筑建领域中得到了较为广泛的应用。长江科学院提出了适用于水工建筑的水泥基复合材料(HECC)概念。根据不同水工结构功能要求,HECC应具有按需设计的拌和物性能和成型方法、中等强度、低弹性模量、按需设计的延伸率、较强的热稳定性、高耐久性、可控的裂缝宽度以及较为宽泛的原材料选择。在此基础上,提出了HECC在堆石坝新型坝基廊道、面板堆石坝新型防渗面板、堆石坝新型心墙结构、拱坝基础约束区抗震防裂结构等水工结构中的应用构想。同时,展望了HECC未来拟研究的方向。研究成果对于提高水工结构的安全性、经济性和耐久性有参考价值。
(LI Jia-zheng. Envisaging the Application of Hydraulic Engineered Cementitious Composites (HECC) in Hydraulic Structures[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 1-6, 26. (in Chinese))
[16]
张大长, 陈怀亮, 韩丽婷. 塑性铰区埋入高阻尼隔震橡胶后RC柱抗震性能的试验研究[J]. 工程力学, 2009, 26(10): 102-110.
(ZHANG Da-chang, CHEN Huai-liang, HAN Li-ting. Experimental Study on the Seismic Behavior of Rc Column with Rubber Layer Built in Its Plastic Hinge[J]. Engineering Mechanics, 2009, 26(10): 102-110. (in Chinese))
[17]
吴秋军, 傅少君. 子模型方法研究瀑布沟土石坝防渗结构[J]. 武汉大学学报(工学版), 2006, 39(3): 55-59.
(WU Qiu-jun, FU Shao-jun. Study on Seepage Prevention Structure for Pubugou Earth-rock Dam by Sub-model Method[J]. Engineering Journal of Wuhan University, 2006, 39(3): 55-59. (in Chinese))
[18]
魏匡民, 陈生水, 李国英, 等. 位移多点约束法在面板堆石坝精细模拟中的应用研究[J]. 岩土工程学报, 2020, 42(4): 616-623.
(WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al. Application of Displacement Multi-point Constraint Refinement Method in Simulation of Concrete-faced Rockfill Dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 616-623. (in Chinese))
[19]
王兆毅, 王宪杰, 张帆, 等. 基于多尺度模型的单层网壳非线性屈曲分析[J]. 科学技术与工程, 2022, 22(15):6219-6227.
(WANG Zhao-yi, WANG Xian-jie, ZHANG Fan, et al. Nonlinear Buckling Analysis of Single-layer Reticulated Shell Based on Multi-scale Model[J]. Science Technology and Engineering, 2022, 22(15):6219-6227. (in Chinese))
[20]
邹德兵, 熊泽斌, 王汉辉, 等. 坝基防渗墙与土质心墙廊道式连接构造设计[J]. 人民长江, 2020, 51(10): 128-132.
(ZOU De-bing, XIONG Ze-bin, WANG Han-hui, et al. Design of Gallery Connection Structure between Anti-seepage Wall and Soil Core Wall[J]. Yangtze River, 2020, 51(10): 128-132. (in Chinese))
[21]
钱家欢. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996.
(QIAN Jia-huan. Geotechnical Principles and Calculations[M]. Beijing: China Water & Power Press, 1996. (in Chinese))

基金

国家自然科学基金重点项目(52239009)
中央级公益性科研院所基本科研业务费项目(CKSF20241023/CL)

PDF(6106 KB)

Accesses

Citation

Detail

段落导航
相关文章

/