PDF(8845 KB)
PDF(8845 KB)
PDF(8845 KB)
抽水蓄能电站厂房振动问题分析及对策
Analysis and Solutions for Powerhouse Vibration in Pumped Storage Power Stations
随着我国双碳战略的实施,抽水蓄能在新型电力系统中的地位愈加突显,而抽水蓄能机组引发厂房振动问题亦备受关注。总结分析了我国张河湾、黑麋峰、广州抽水蓄能电站在运抽水蓄能厂房振动案例的振源识别及其控力、错频和补强3种典型解决方法;梳理了目前广泛采用的两种厂房结构设计方案—厚板连续墙结构与板梁框架结构特点;基于厂房与机组振动控制案例,提出了结构振动测量的测点布置方案,明确了厂房结构振动测试方法与安全评价标准。研究成果对提高抽水蓄能电站厂房结构设计水平具有重要指导意义。
[Objective] With the implementation of China’s dual-carbon strategy, pumped storage has become increasingly important in the new-type power system dominated by renewable energy resources. As the operating intensity of pumped storage units continues to increase, vibration problems of pumped storage powerhouses have become increasingly common. It is necessary to summarize solutions to vibration problems in operating pumped storage power stations and units to guide the design of future stations. [Methods] This study presented the identification of vibration sources and solutions to vibration issues of pumped storage power stations in Zhanghewan, Heimifeng, and Guangzhou. Two widely used structural design schemes for pumped storage powerhouses—thick-plate continuous wall structure and plate-girder frame structure—were presented, with a discussion of their advantages and disadvantages. Based on the actual cases, the layout of vibration measurement points for both the powerhouse and the unit was provided. Test methods and evaluation indicators were established for powerhouse vibration. [Results] Three typical methods for alleviating vibration in the powerhouse and pumped storage unit were proposed: controlling the energy generated by hydraulic excitation sources, staggering the frequencies between stationary parts and hydraulic excitation sources, improving the local or overall stiffness of structures. For structure stiffness and vibration resistance, the thick-plate continuous wall structure and plate-girder frame structure showed no significant difference. For the measurement and calculation of powerhouse vibration, more attentions should be paid to individual structural components to prevent local resonance with hydraulic excitation sources. [Conclusion] Both the thick-plate continuous wall structure and plate-girder frame structure can be widely used for pumped storage power stations, depending on specific engineering requirements. The natural frequencies of overall and local powerhouse structures should maintain a frequency deviation of 20% from hydraulic excitation source frequencies. If the vibration velocity is used as an evaluation indicator, the maximum vibration values should be less than 10 mm/s on the powerhouse floor and 5 mm/s in the pit. This study provides important guidance for improving the structural design of pumped storage power stations in China.
抽水蓄能 / 厂房振动 / 厚板连续墙结构 / 板梁框架结构 / 振动测试 / 安全评价
pumped storage / powerhouse vibration / thick-plate continuous wall structure / plate-girder frame structure / vibration testing / safety evaluation
| [1] |
周建平, 杜效鹄, 周兴波. 面向新型电力系统的水电发展战略研究[J]. 水力发电学报, 2022, 41(7):106-115.
(
|
| [2] |
国家能源局. 抽水蓄能中长期发展规划(2021—2035年))[EB/OL].(2021-09-17) [2024-05-10]
(National Energy Administration. Medium and Long-term Development Plan for Pumped Storage (2021-2035))[EB/OL].(2021-09-17) [2024-05-10] (in Chinese))
|
| [3] |
中国电力企业联合会. 2023—2024年度全国电力供需形势分析预测报告[EB/OL].(2024-01-30) [2024-05-10]
(China Electricity Council. Analysis and Forecast Report on Supply and Demand of National Electricity in 2023-2024[EB/OL].(2024-01-30) [2024-05-10] (in Chinese))
|
| [4] |
文劲宇, 孟沛彧, 向往, 等. 面向新型电力系统的直流输电换流器统一拓扑架构[J]. 新型电力系统, 2023(1): 84-98.
(
|
| [5] |
刘泽洪. 新型电力系统建设与水电创新发展[J]. 新型电力系统, 2023, 1(2):105-115.
(
|
| [6] |
刘攀, 陈学力, 汪泉, 等. 高水头混流式水轮机的动静干涉与振动问题研究[J]. 水力发电学报, 2016, 35(3): 91-98.
(
|
| [7] |
|
| [8] |
胡爱军, 田苗, 周鹏, 等. 浅谈西龙池抽水蓄能电站转轮裂纹分析与修复处理[C]// 中国水力发电工程学会.抽水蓄能电站工程建设文集. 北京: 中国水利水电出版社, 2021: 389-396.
(
|
| [9] |
袁寿其, 方玉建, 袁建平, 等. 我国已建抽水蓄能电站机组振动问题综述[J]. 水力发电学报, 2015, 34(11):1-15.
(
|
| [10] |
华丕龙, 吕小彬. 广州蓄能水电厂A厂地下厂房结构振动特性分析[J]. 广东水利水电, 2015(10):34-39.
(
|
| [11] |
路建, 胡清娟, 谷振富, 等. 张河湾抽水蓄能电站水泵水轮机动静干涉问题及处理[J]. 水电与抽水蓄能, 2019, 5(2): 82-86.
(
|
| [12] |
|
| [13] |
郑建兴, 刘平, 梁权伟, 等. 黑麋峰抽水蓄能机组国产化与水力优化总结回顾[J]. 水电与抽水蓄能, 2023, 9(2):87-98.
(
|
| [14] |
耿聃, 宋志强, 苏晨辉. 水力脉动对水电站机组及厂房结构的影响研究与振动控制综述[J]. 长江科学院院报, 2016, 33(10): 135-139.
水力振源在某些工况下可能对机组的正常运行造成影响,同时引起厂房结构不同程度的振动,且水力振源频域分布广,作用范围大,是水力、机械、电磁3种振源中最主要的振源,因此研究水力脉动及其造成的影响有着十分重要的意义。现有的研究成果对于水力振源特性的研究主要依赖于模型试验,存在模型尺寸比例误差和测点过少等问题,对于机组及厂房结构的振动稳定性计算也过于简化。根据计算流体动力学(CFD)数值模拟方法,提出一种新的厂房水力振源研究方法,将水力振源转化为激励作用于转轮、蜗壳、尾水管部位,研究机组及厂房结构的稳定性,是未来可能的水力振源施加新方法,有着重要工程实际意义及应用前景。
(
Hydraulic vibration source influences the normal operation of hydropower unit, and induces the vibration of powerhouse. As the most important source among the three vibration sources, hydraulic source distributes widely and affects large areas. Current research on the characteristics of hydraulic source mainly depends on model test which has scale error and is in lack of monitoring points. Also the stability calculation for hydropower unit and power house is excessively simplified. In view of this, a new approach of researching hydraulic source is put forward according to CFD (computational fluid dynamics) numerical simulation. The hydraulic source is converted into incitation on rotational wheel, spiral case and tail water tube to research the stability of unit and power house.
|
| [15] |
谷振富. 张河湾蓄能电站厂房减振降噪项目研究[D]. 北京: 华北电力大学, 2014.
(
|
| [16] |
尹铫, 刘碧龙, 常道庆, 等. 张河湾蓄能电站厂房噪声与振动调查[J]. 噪声与振动控制, 2012(增刊1):157-160.
(
|
| [17] |
|
| [18] |
刘平. 黑麋峰抽水蓄能电站变参数工况机组及厂房振动试验分析[C]// 中国水力发电工程学会.抽水蓄能电站工程建设文集. 北京: 中国电力出版社, 2019: 232-236.
(
|
| [19] |
李金伟, 欧阳金惠, 郑建兴, 等. 黑麋峰抽水蓄能电站引水发电系统区域环境振动研究[C]// “一带一路” 与中国水电设备——2018年水力机械信息网技术交流会论文集. 北京: 中国水利水电出版社, 2018: 228-234.
(
|
| [20] |
茹松楠, 周开涛, 郑晓东, 等. 抽水蓄能电站输水管道区域环境振动分析及减振措施[J]. 河北工程大学学报(自然科学版), 2024, 41(2): 86-94.
(
|
| [21] |
黄勇, 华丕龙, 宋一乐. 广州抽水蓄能电站A厂结构综合评估与加固处理研究与思考[J]. 水电与抽水蓄能, 2017, 3(4): 45-49.
(
|
| [22] |
薛继乐, 段自力, 覃艳涛. 广州抽水蓄能电站A厂厂房结构裂缝成因分析[J]. 广东水利水电, 2017(12):22-26.
(
|
| [23] |
何直. 广州抽水蓄能电站地下厂房结构型式对其抗振性能影响研究[J]. 水力发电, 2014, 40(11): 75-78.
(
|
| [24] |
周艳国, 何涛, 何直, 等. 广州抽水蓄能电站A厂厂房结构动力特性试验研究[J]. 水电与抽水蓄能, 2017, 3(4): 38-44.
(
|
| [25] |
苏鹏力, 华丕龙. 广州蓄能水电厂A厂地下厂房结构检测与加固方案设计[J]. 水力发电, 2016, 42(9): 64-67.
(
|
| [26] |
刘建, 伍鹤皋. 脉动压力谐响应和时程分析的差异性研究[J]. 长江科学院院报, 2014, 31(8): 93-97.
谐响应分析和时程分析是研究水电站厂房结构在脉动压力作用下的振动响应时最常用的2种方法。为分析2种方法的差异性,采用谐响应分析法和时程分析法计算了同一抽水蓄能电站厂房结构在脉动压力作用下的振动响应。对2种方法计算的厂房结构振幅、振动速度、振动加速度和动应力进行对比分析,从而分析2种计算方法的差异性。结果表明:采用谐响应分析法计算的振幅、振动速度和振动加速度的均方根值大于时程分析的计算结果,但峰值小于时程分析的计算结果;厂房结构动应力数值不大,两者的计算结果差别不大。能够获得脉动压力时程资料时,应尽量采用时程分析法计算动力响应;缺乏脉动压力时程资料时,谐响应法也可用来分析动力响应。
(
Harmonic response analysis and time history analysis are both most commonly used to analyze the vibration responses of powerhouse structure. In order to analyze the differences between these two methods, we calculated the vibration responses of powerhouse structure of a pumped storage station under pressure fluctuations using the two methods. By comparing the vibration amplitude, vibration speed, vibration acceleration and dynamic stresses of powerhouse structure, we obtained the differences between these two methods. Results suggest that the root mean square values of vibration amplitude, vibration speed and acceleration calculated by harmonic response analysis are bigger and peak values are smaller than those calculated by time history analysis. The dynamic stress of powerhouse structure calculated by the two methods are both small and the difference between the results is also small. When the time-history data of pressure fluctuation is available, time history analysis method is preferable; if not, harmonic method can also be used to analyse the dynamic responses of powerhouse structure.
|
| [27] |
王海军, 郑韩慈, 周济芳. 水电站厂房结构密集模态识别研究[J]. 水力发电学报, 2016, 35(2): 117-123.
(
|
| [28] |
肖微, 刘国庆, 王伟, 等. 大型抽水蓄能电站地下厂房结构自振特性分析[J]. 中国水利水电科学研究院学报(中英文), 2024, 22(2): 138-148.
(
|
| [29] |
GB/T 17189—2017,水力机械(水轮机、蓄能泵和水泵水轮机)振动和脉动测试规模[S]. 北京: 中国标准出版社, 2018.
(GB/T 17189—2017,Code for Field Measurement of Vibrations and Pulsations in Hydraulic Machines(Turbines,Storage Pumps and Pump-turbines[S]. Beijing: Standards Press of China, 2018. (in Chinese))
|
| [30] |
DL/T 2431—2021, 抽水蓄能电站过渡过程试验技术导则[S]. 北京: 中国电力出版社, 2022.
(DL/T 2431—2021, Technical Guide for Test of Hydraulic Transient Operation of Pumped-storage Plants[S]. Beijing: China Electric Power Press, 2022. (in Chinese))
|
| [31] |
NB 35011—2016,水电站厂房设计规范[S]. 北京: 中国水利水电出版社, 2016.
(NB 35011—2016,Design Specification for Powerhouses of Hydropower Stations[S]. Beijing: China Water & Power Press, 2016. (in Chinese))
|
| [32] |
张飞, 梁廷婷, 陈刚, 等. 抽水蓄能机组状态在线监测中的振动信号积分方法[J]. 水电能源科学, 2023, 41(10):212-215.
(
|
| [33] |
GB 50868—2013, 建筑工程容许振动标准[S]. 北京: 中国计划出版社, 2013.
(GB 50868—2013, Standard for Allowable Vibration of Building Engineering[S]. Beijing: China Planning Press, 2013. (in Chinese))
|
| [34] |
NB 35074—2015, 水电工程劳动安全与工业卫生设计规范[S]. 北京: 中国水利水电出版社, 2016.
(NB 35074—2015, Code for Design of Occupational Safety and Health of Hydropower Projects[S]. Beijing: China Water & Power Press, 2016. (in Chinese))
|
| [35] |
GB 50706—2011,水利水电工程劳动安全与工业卫生设计规范[S]. 北京: 中国计划出版社, 2012.
(GB 50706—2011,Code for Design of Occupational Safety and Health of Water Resources and Hydropower Projects[S]. Beijing: China Planning Press, 2012. (in Chinese))
|
| [36] |
GB/T 13441.1—2007,机械振动与冲击人体暴露于全身振动的评价第1部分:一般要求[S]. 北京: 中国标准出版社, 2007.
(GB/T 13441.1—2007, Mechanical Vibration and Shock-evaluation of Human Exposure to Whole-body Vibration: Part 1: General Requirements[S]. Beijing: Standards Press of China, 2007. (in Chinese))
|
/
| 〈 |
|
〉 |