PDF(5849 KB)
PDF(5849 KB)
PDF(5849 KB)
引江补汉工程控制枢纽品字型双层闸门水力控制技术
Hydraulic Control Technology for Double-deck Gate of a Control Sluice for the Yangtze-Hanjiang River Diversion Project
石花控制闸是引江补汉工程的控制枢纽,采用品字型双层闸门布置解决了引江补汉工程高水头、超长有压输水水力控制关键技术难题。为了探究石花控制闸品字型双层闸门水力控制技术,采用数值计算和水工模型试验的方法开展研究:①采用一维、三维耦合数学模型计算控制闸启闭引起的系统水力过渡过程,为工程设计提供边界条件;②采用物理模型试验分析控制闸体型的合理性。结果表明:系统沿线最大、最小压力均满足相关规程要求;控制闸内水流流态、压力分布等指标正常,控制闸体型合理。石花控制闸总体设计方案合理,布置方式和研究方法可为其他类似工程提供参考。
Shihua sluice serves as the control hub for the Water Diversion Project from the Three Gorges Reservoir to the Hanjiang River. A double-layer gate layout is employed to address key technical challenges in hydraulic control such as high-head and long-pressurized water conveyance. Numerical calculations and hydraulic model tests were conducted to explore the hydraulic control technologies in the double-layer control gate. A one-dimensional and three-dimensional coupled mathematical model simulates the hydraulic transition process resulting from the opening and closing of the control gate, providing essential boundary conditions for engineering design. Physical model test analyzes the rationality of the control gate shape. Findings indicate that the maximum and minimum pressures throughout the system comply with relevant regulations. Parameters such as water flow patterns and pressure distribution are normal, and the shape configuration is appropriate. Overall, the design scheme for the Shihua sluice is effective. Its layout and our research methods offer reference for similar projects.
品字型双层闸门 / 长距离输水 / 水力过渡过程 / 水力控制 / 石花控制闸 / 引江补汉工程
double-deck gate / long distance water delivery / hydraulic transition process / hydraulic control / Shihua sluice / Water Diversion Project from the Three Gorges Reservoir to the Hanjiang River
| [1] |
陈维江, 石海峰, 李春阳, 等. 引江补汉工程段中分层减压控制闸布置与体型研究[J]. 南水北调与水利科技(中英文), 2023, 21(6):1126-1133.
(
|
| [2] |
钮新强, 万蕙, 刘琪. 引江补汉工程关键技术挑战[J]. 中国水利, 2022(18):15-17,11.
(
|
| [3] |
武松, 韩健, 袁葳, 等. 引江补汉工程超长深埋有压输水隧洞设计[J]. 中国水利, 2022(18): 48-50, 35.
(
|
| [4] |
王磊, 蔺秋生, 赵健. 引江补汉工程总体布局论证概述[J]. 中国水利, 2022(18): 36-39.
(
|
| [5] |
王吉亮, 向家菠, 颜慧明, 等. 引江补汉工程输水线路工程地质选线研究[J]. 长江科学院院报, 2023, 40(5): 100-105.
引江补汉工程是南水北调中线工程的后续工程,可行性研究阶段坝下方案输水隧洞初拟4条线路进行比选,比选线路区地形地质条件和工程地质问题复杂,具有线路长、埋深大,地层岩性复杂多样、可溶岩和软质岩分布较多,地质构造背景复杂、总体地应力水平高等地质特点,深埋长隧洞工程可能涉及的工程地质问题均有可能出现,有必要选择一条地质条件相对较优的线路。经分析研究,将线路比选考虑的地质因素分为关键地质因素、重要地质因素、一般地质因素,并建立多因子条件下的线路比选模型,经工程地质综合比选,龙安1线输水隧洞方案总体较优,地质选线成果为工程设计综合选线提供了重要依据,地质比选研究思路与方法可为同类工程提供借鉴。
(
The Water Diversion Project from the Three Gorges Reservoir to the Hanjiang River (WDTGH) is a follow-up project to the Middle Route Project (MRP) of the South-to-North Water Diversion (SNWD). During the feasibility study stage, four routes of water conveyance tunnel under the Danjiangkou dam were proposed for comparison based on their topographical and geological conditions and engineering geological problems. The geological conditions of the proposed routes are complex, with long routes, large burial depths, varied formation lithology, abundant dissolvable rocks and soft rocks, complex geological structure background, and high overall geostress levels. Therefore, it is necessary to select a route with relatively good geological conditions to avoid engineering geological problems that may occur in the deep-buried long tunnel project. Through analysis, the geological factors considered in the comparison and selection of the routes were classified into three levels as key geological factors, important geological factors, and general geological factors. A comparison model under the condition of multiple factors was established for comprehensive analysis and comparison on engineering geology. The study reveal that the water tunnel scheme of Long'an Line 1 has overall advantages. Thus, the results of geological route selection provide foundation for comprehensive route selection in engineering design. Additionally, the research ideas and methods of geological comparison and selection can serve as a reference for similar projects.
|
| [6] |
杨开林. 长距离输水水力控制的研究进展与前沿科学问题[J]. 水利学报, 2016, 47(3):424-435.
(
|
| [7] |
李江云, 周飞. 长距离输水系统水锤影响因素及防护措施探究[J]. 给水排水, 2023, 49(8):106-112.
(
|
| [8] |
张雷, 李明, 佟继有, 等. 长距离重力流输水管线水锤计算及防护研究[J]. 水资源与水工程学报, 2023, 34(1): 121-126.
(
|
| [9] |
谢杰, 黄伟, 李火坤, 等. 长距离重力流输水系统的联合阀组水力控制研究[J]. 给水排水, 2023, 49(4):104-112.
(
|
| [10] |
马志敏, 乔俊蕾, 付永飞. 长距离加压和有压重力输水管道水锤防护分析比较[J]. 水力发电, 2022, 48(7):52-57.
(
|
| [11] |
王政平, 贾东远, 马追. 长距离重力流输水工程关阀方案优化研究[J]. 人民黄河, 2021, 43(4): 142-146.
(
|
| [12] |
董航凯, 田睿, 王启国. 长距离输水管道水力过渡过程计算[J]. 水利建设与管理, 2022, 42(8): 32-38.
(
|
| [13] |
周天驰, 李高会, 仇为鑫, 等. 复杂重力流供水系统水力过渡过程分析与水锤防护设计[J]. 中国农村水利水电, 2021(12): 216-221.
临平自来水厂供水工程起点位于千岛湖引水工程余杭分水点,供水对象为临平、仁和、宏畔、塘栖4个水厂,管道直径1.4~2.6 m,总长度30.9 km,远景供水规模43 万m<sup>3</sup>/d,采用全程重力流供水方式,供水用户多、线路复杂,水力过渡过程计算分析复杂、水锤防护设计难度大。首先采用华东院自主开发的供水工程水力过渡过程仿真计算软件Hysimcity进行建模及计算分析,确定供水系统水力过渡过程中压力变化情况;接着针对供水系统各个部位的水力学特点以及整个系统的水力学特性,开展整个输水系统的水锤防护设计。最终确定在临平、仁和、宏畔、塘栖水厂前设置直径1 m的超压泄压阀及各个水厂阀门一段直线关闭的联合水锤防护方案,有效解决了多用户重力流供水系统的水锤问题。
(
The water supply project of Linping waterworks starts from Yuhang water distribution outlet of Qiandaohu Water Diversion Project, supplying for four waterworks of Linping, Renhe, Hongpan and Tangqi. The diameter of the pipeline is 2.6~1.4 m, the total length is 30.9 km, and the prospective water supply scale is 43×104 m3/d. The project adopts gravity flow water supply mode, with many water users and complex lines, so the calculation and analysis of hydraulic transient process is complex and the design of water hammer protection is difficult. In this paper, the hydraulic transient process simulation software-Hysimcity developed by Huadong Engineering Corporation Limited is used for modeling and calculation, and the pressure change of water supply system in the hydraulic transient process is obtained. According to the hydraulic characteristics of the system, the water hammer protection design of the whole water supply system is carried out. After a lot of trial calculation and analysis, when the regulating valve in front of the waterworks is closed in 120 s, the water hammer problem is effectively solved by setting the pressure relief valve with diameter of 1m in front of each waterworks. |
| [14] |
刘振英, 毛元静. 基于三维数值模拟分析输水工程取水头部水流特性[J]. 水利科技与经济, 2021, 27(3):18-22.
(
|
| [15] |
严继松, 廖国玲. 有压管道充水过程水力特性三维数值模拟[J]. 水利水电技术, 2015, 46(3): 110-114.
(
|
/
| 〈 |
|
〉 |