PDF(7077 KB)
PDF(7077 KB)
PDF(7077 KB)
碱激发稻壳灰地聚物固化粉土试验
Experimental Study on Silt Stabilization Using Alkali-activated Rice Husk Ash Geopolymer
[Objective] To address the need for improving the mechanical properties and water stability of silt subgrade, this study takes silt stabilized with alkali-activated rice husk ash (RHA) geopolymer as study object and investigates its reinforcement mechanisms and engineering applicability, aiming to determine the optimal combination of activator concentration and RHA dosage.[Methods] NaOH solution and RHA were used synergistically to stabilize silt. Mix proportions were optimized through compaction tests, and macro-mechanical properties were evaluated via unconfined compressive strength tests and disintegration tests. X-ray diffraction (XRD) was used to analyze the composition of hydration products, and scanning electron microscopy (SEM) was employed to characterize the microstructural evolution, systematically revealing the “activation-cementation-strengthening” mechanism.[Results] The results showed that micron-sized RHA particles effectively filled the pores of the silt, while NaOH activated RHA to generate silicate gels, leading to a denser spatial network structure. Mechanical properties were significantly improved: at a NaOH concentration of 10% and an RHA dosage of 7.5%, the unconfined compressive strength reached 1.501 times that of the control group, and disintegration resistance was remarkably enhanced. The micro-macro performance indicated that the interfacial bonding strength of cementitious products is the main controlling factor for the improvements of compressive strength and disintegration resistance.[Conclusion] The alkali-activated RHA geopolymer achieves coordinated improvement of the mechanical properties and water stability of silt through the combined effects of physical filling and chemical cementation. The optimal mix proportion (10% NaOH+7.5% RHA) provides a low-carbon solution for silt subgrade reinforcement and promotes the resource utilization of solid waste (RHA), demonstrating notable engineering, economic, and environmental benefits.
粉土 / 稻壳灰 / 碱激发 / 土体固化 / 强度 / 崩解
silt / rice husk ash / alkali activation / soil stabilization / strength / disintegration
| [1] |
|
| [2] |
杨志浩, 岳祖润, 冯怀平. 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
(
|
| [3] |
李晨, 张正甫, 刘松玉, 等. 水泥石灰固化软土中的钙矾石形成研究[J]. 岩土工程学报, 2013, 35(增刊2): 662-665.
(
|
| [4] |
吕擎峰, 王子帅, 何俊峰, 等. 碱激发地聚物固化盐渍土微观结构研究[J]. 长江科学院院报, 2020, 37(1): 79-83.
碱激发地聚物胶凝材料能够有效固化硫酸盐渍土的根本机理在于改善固化土的微观结构。通过对比试验研究水玻璃、石灰粉煤灰和水玻璃石灰粉煤灰固化盐渍土的无侧限抗压强度和微观结构,阐述了水玻璃碱激发粉煤灰地聚物固化盐渍土微观结构效应。试验结果表明:石灰粉煤灰能够改善盐渍土颗粒级配,缩小孔径范围,降低孔隙体积,进而提高抗压强度;水玻璃能够胶结土颗粒成为团聚体,减小孔隙率和孔隙体积,其抗压强度受浓度影响较大;水玻璃石灰粉煤灰的孔隙特征不是最佳,但由于碱激发地聚物生成的水化凝胶物质填充了粒间孔隙,改善了颗粒胶结状况,抗压强度最高;碱激发地聚物固化盐渍土效果受碱激发反应程度的影响,反应程度越高,固化效果越好。
(
The fundamental mechanism by which alkali-excited geopolymer gelling material can effectively cure the sulfated soil lies in the improvement of the microstructure of the solidified soil. By comparing the unconfined compressive strength and microstructure of saline soil specimens solidified by water glass, lime-fly ash and water glass-lime fly ash, we examined the microstructure of saline soil solidified by water-glass alkali-activated fly ash geopolymer. Test results evinced that lime and fly ash together improved the particle gradation of saline soil, cut the pore size range, reduced the pore volume, and thus enhanced the compressive strength; water glass cemented the soil particles into agglomerates, reduced porosity and pore volume, and its compressive strength was markedly affected by concentration. The pore characteristics of saline soil solidified by water glass-lime fly ash were not optimal; but the compressive strength was the highest because hydration gel material formed by alkali-excited geopolymer filled the intergranular pores and improved the particle cementation condition. The solidification effect of alkali-excited geopolymer is affected by the degree of alkali-induced reaction. The higher the degree of reaction, the better the curing effect.
|
| [5] |
王重阳, 李晓丽, 赵晓泽, 等. 碱激发下砒砂岩钢渣粉水泥复合土强度及微观机理[J]. 长江科学院院报, 2023, 40(7): 132-138.
为减少砒砂岩区土壤水土流失,实现钢渣粉和砒砂岩在实际工程中的有效利用,通过无侧限抗压、X射线衍射(XRD)、扫描电子显微镜、超景深三维显微镜和压汞等试验,探究钢渣粉掺量、碱质量分数对砒砂岩钢渣粉水泥复合土宏观力学性能及细微观结构的影响。研究结果表明:在高温碱激发作用下,钢渣粉水化生成的凝胶和铝铁钙石对复合土的增强作用低于水泥对复合土的增强作用,导致钢渣粉替代水泥掺量增加,复合土的抗压强度降低;碱激发剂增加,可促进钢渣粉水化生成产物增多,更好地起到胶结土颗粒和填充内部孔隙的作用,使复合土表面结构更均匀,内部结构更密实,抗压强度提高,碱质量分数为2%时,效果最佳。研究成果可为砒砂钢渣粉水泥复合土在工程实际应用提供理论依据。
(
|
| [6] |
周浩雪, 马倩敏, 郭荣鑫, 等. 养护方式对碱激发矿渣/粉煤灰胶凝材料抗压强度影响研究[J]. 材料导报, 2024, 38(增刊1): 329-334.
(
|
| [7] |
王志良, 陈玉龙, 申林方, 等. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 141-147.
(
|
| [8] |
刘玉琳, 袁胜洋, 邓开元, 等. NaOH激发粉煤灰地聚物强度特性及破坏形式试验研究[J/OL]. 铁道标准设计, 2024: 1-10.(2024-04-15). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TDBS2024040800R&dbname=CJFD&dbcode=CJFQ.
|
| [9] |
陈林, 李彬, 陈胜邦, 等. 碱激发矿渣加固淤泥的物理力学性能与机理[J]. 科学技术与工程, 2024, 24(2):789-796.
(
|
| [10] |
|
| [11] |
李丽华, 韩琦培, 肖衡林, 等. 电石渣-稻壳灰固化铜污染土抗压强度及环境特性研究[J]. 铁道科学与工程学报, 2023, 20(8): 2878-2888.
(
|
| [12] |
李丽华, 韩琦培, 杨星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报, 2023, 56(12): 166-176.
(
|
| [13] |
李丽华, 李孜健, 肖衡林, 等. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.
(
|
| [14] |
李丽华, 岳雨薇, 李文涛, 等. 稻壳灰固化重金属污染土力学性能及微观结构研究[J]. 铁道科学与工程学报, 2022, 19(11): 3275-3282.
(
|
| [15] |
李丽华, 岳雨薇, 肖衡林, 等. 稻壳灰-水泥固化镉污染土性能及影响机制[J]. 岩土工程学报, 2023, 45(2):252-261.
(
|
| [16] |
易富, 管茂成, 李军, 等. 稻壳灰-地聚物固化土力学特性及机理分析[J]. 水文地质工程地质, 2022, 49(2): 94-101.
(
|
| [17] |
|
| [18] |
|
| [19] |
TB 10102—2023, 铁路工程土工试验规程[S]. 北京: 中国铁道出版社, 2014.
(TB 10102—2023, Diesel Locomotive Filters Part 3: Air Filters[S]. Beijing: China Railway Publishing House, 2014.) (in Chinese)
|
| [20] |
谷奇. 碱激发稻壳灰-矿渣基充填体力学特性研究[D]. 阜新: 辽宁工程技术大学, 2021.
(
|
| [21] |
江训利. 稻壳灰无机复合固化土微观机理及非线性力学性能研究[D]. 杭州: 浙江大学, 2022.
(
|
| [22] |
赵彦旭, 向俊燃, 吕擎峰, 等. 碱激发剂对地聚物固化黄土工程特性的影响[J]. 北京工业大学学报, 2021, 47(6): 636-643.
(
|
| [23] |
毛雯婷, 屈文俊, 朱鹏. 稻壳灰在超高性能混凝土中的研究应用进展[J]. 江西科学, 2014, 32(1): 66-72.
(
|
| [24] |
李建东, 王旭, 张延杰, 等. F1离子固化剂加固黄土强度及微观结构试验研究[J]. 东南大学学报(自然科学版), 2021, 51(4): 618-624.
(
|
| [25] |
|
/
| 〈 |
|
〉 |