酸性干湿循环作用下喀斯特地区灰岩的损伤本构研究

张研, 袁普龙, 黄兰淘

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 139-146.

PDF(7095 KB)
PDF(7095 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 139-146. DOI: 10.11988/ckyyb.20240490
岩土工程

酸性干湿循环作用下喀斯特地区灰岩的损伤本构研究

作者信息 +

Constitutive Study of Limestone Damage in Karst Areas under Acidic Dry-Wet Cycles

Author information +
文章历史 +

摘要

为更好地探究灰岩在酸性干湿循环作用下的损伤规律,以桂林岩溶区灰岩作为研究对象,对其开展不同酸性干湿循环作用下的常规三轴压缩试验,分析灰岩损伤后的强度和变形特征。通过建立灰岩在酸性干湿循环-荷载作用下的几何损伤模型,引入Weibull分布函数和复合损伤变量,得到灰岩的统计损伤本构模型。结果表明:在酸性干湿循环作用下,灰岩的内部结构遭到破坏,高循环次数下,弹性模量的劣化增幅更高;模型模拟曲线和试验数据吻合度较高,能够客观地反映灰岩三轴受压破坏的应力-应变全过程和变形特征;灰岩的总损伤演化曲线基本呈“s”型,分为初始损伤阶段、损伤快速发展阶段、损伤减缓发展阶段、完全损伤阶段;在低循环次数下,酸性的增强使得灰岩的脆性出现一定的增强。研究结果可为岩溶区的岩土工程建设、边坡治理等提供参考。

Abstract

[Objectives] This study focuses on the damage patterns of limestone in karst regions under acidic dry-wet cycles, aiming to explore the effects of the coupled action of acidic environment and dry-wet cycles on the mechanical properties and damage mechanisms of limestone. [Methods] Limestone from the Guilin karst region was selected as the research subject. Dry-wet cycle tests were conducted in acidic solutions with pH values of 3, 5, and 7 to simulate acid rain erosion. The number of cycles was set at 10, 20, and 30. Conventional triaxial compression tests were carried out to obtain stress-strain data and analyze the strength and deformation characteristics of the limestone. By integrating the Weibull distribution function with a composite damage variable, a geometric damage model was established. A statistical damage constitutive model for limestone was derived and its validity was verified using experimental data. [Results] (1)Mechanical degradation behavior: peak stress and elastic modulus exhibited exponential decay with increasing cycle count. The most significant degradation occurred at pH 3, where the elastic modulus decreased by 29.6% after 30 cycles. Notably, at higher cycle counts, the degradation rate in elastic modulus exceeded that of peak strength. (2)Model validation: The theoretical curves of the newly developed constitutive model showed strong agreement with the experimental data, accurately capturing the full stress-strain response of limestone under triaxial compression, including the residual strength phase. (3)Damage evolution mechanism: The total damage curve followed an “S”-shaped four-stage evolution (initial damage, rapid development, slowed development, and complete damage). Lower pH values led to an earlier onset of critical strain. After 10 cycles, the strain at the peak damage rate was significantly reduced, indicating that acidic environments induce increased brittleness in limestone. [Conclusions] The damage constitutive model developed in this study effectively reflects the mechanical behavior and damage evolution of limestone under acidic dry-wet cycles. The research reveals the complex mechanisms of acid-induced damage in limestone, offering new theoretical insights and methods for geotechnical design and slope stability analysis in karst regions, and provides an important reference for evaluating and predicting the performance of limestone materials in practical engineering applications in karst regions.

关键词

灰岩 / 酸性环境 / 干湿循环 / 损伤本构 / 损伤演化

Key words

limestone / acidic environment / dry-wet cycle / damage constitutive model / damage evolution

引用本文

导出引用
张研, 袁普龙, 黄兰淘. 酸性干湿循环作用下喀斯特地区灰岩的损伤本构研究[J]. 长江科学院院报. 2025, 42(6): 139-146 https://doi.org/10.11988/ckyyb.20240490
ZHANG Yan, YUAN Pu-long, HUANG Lan-tao. Constitutive Study of Limestone Damage in Karst Areas under Acidic Dry-Wet Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(6): 139-146 https://doi.org/10.11988/ckyyb.20240490
中图分类号: TU45 (岩石(岩体)力学及岩石测试)   

参考文献

[1]
韩铁林, 师俊平, 陈蕴生. 干湿循环和化学腐蚀共同作用下单裂隙非贯通试样力学特征的试验研究[J]. 水利学报, 2016, 47(12): 1566-1576.
(HAN Tie-lin, SHI Jun-ping, CHEN Yun-sheng. Laboratory Study on Mechanical Behaviours of the Single-intermittent Cracked Masses under the Combined Action of Water Chemical Corrosion and Dry-wet Cycles[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1566-1576. (in Chinese))
[2]
张红波, 于奭, 何师意, 等. 桂林岩溶区大气降水的化学特征分析[J]. 中国岩溶, 2012, 31(3): 289-295.
(ZHANG Hong-bo, YU Shi, HE Shi-yi, et al. Analysis on the Chemical Characteristics of the Atmospheric Precipitation in Guilin[J]. Carsologica Sinica, 2012, 31(3): 289-295. (in Chinese))
[3]
杨圣奇, 荆晓娇. 盐水干湿循环后砂岩物理力学特性试验研究[J]. 岩土工程学报, 2023, 45(10): 2165-2171.
(YANG Sheng-qi, JING Xiao-jiao. Experimental Study on Physical and Mechanical Properties of Sandstone after Drying-wetting Cycles of Brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. (in Chinese))
[4]
宁赞格, 李大鹏, 杨宽才, 等. 白垩系上统高沟组泥质粉砂岩干湿循环损伤机制[J]. 公路交通科技, 2023, 40(11):237-245.
摘要
为探究丹江口库区消落带滑床岩体的强度损伤特性,以区内典型白垩系上统高沟组泥质粉砂岩为研究对象,考虑干湿循环状态和受荷状态双重作用,提出了基于Weibull分布的白垩系上统高沟组泥质粉砂岩的统计损伤本构模型。基于干湿循环单轴试验进行了模型验证,揭示了干湿循环作用下滑床泥质粉砂岩强度损伤规律。结果表明:基于Weibull分布的白垩系上统高沟组泥质粉砂岩的统计损伤本构模型可以较好地反映干湿循环受荷过程中岩石应力-应变过程,相比于5次干湿循环的试样,线弹性阶段的试样在经历10次,15次,25次干湿循环后的弹性模量分别降低2.82%,15.76%,51.07%,峰值强度分别降低3.15%,48.04%,66.26%;5~10次干湿循环过程对试样微裂隙等缺陷的影响较小,总损伤变量分别仅为0.83%,0.88%;15~25次循环后,长石、黏土矿物会在水解、水力侵蚀、淋滤等作用下流失,总损伤变量增加显著,试样轴向应变为0.001 7时即进入损伤加剧阶段;模型中受荷泥质粉砂岩无损状态假设,导致了理论计算的线弹性阶段(岩石压密)的进程偏长,理论峰值强度偏高;考虑15次干湿循环可对该区域粉砂岩影响较大,建议在该区域滑坡治理过程中,应优先强化地表和地下水截排水措施设置,避免滑床部位长期处于干湿交替环境。
(NING Zan-ge, LI Da-peng, YANG Kuan-cai, et al. Dry-wet Cycling Damage Mechanism of Argillaceous Siltstone in Gaogou Formation of Upper Cretaceous[J]. Journal of Highway and Transportation Research and Development, 2023, 40(11):237-245. (in Chinese))
[5]
李长冬, 孟杰, 项林语, 等. 白鹤滩库首区砂岩结构多尺度演变机制[J]. 地球科学, 2023, 48(12): 4658-4667.
(LI Chang-dong, MENG Jie, XIANG Lin-yu, et al. Multi-scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region[J]. Earth Science, 2023, 48(12): 4658-4667. (in Chinese))
[6]
黄震, 张海, 冯学茂, 等. 干湿循环与围压作用下粉砂岩损伤及本构研究[J]. 华中科技大学学报(自然科学版), 2022, 50(3): 122-128.
(HUANG Zhen, ZHANG Hai, FENG Xue-mao, et al. Damage and Constitutive Study of Siltstone under Dry-wet Cycle and Confining Pressure[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(3): 122-128. (in Chinese))
[7]
袁璞, 马冬冬. 干湿循环与动载耦合作用下煤矿砂岩损伤演化及本构模型研究[J]. 长江科学院院报, 2019, 36(8):119-124.
摘要
干湿循环和动载耦合作用会导致煤矿岩石物理力学性质的劣化,引起地下岩体工程结构的破坏,诱发煤矿地下工程地质灾害和工程事故。基于纵波波速变化和Weibull分布统计损伤理论,推导了干湿循环与动载耦合作用下煤矿砂岩的损伤演化方程,探讨了动弹性模量取值方法对损伤演化的影响,发现以动态应力-应变曲线30%与70%峰值应力连线的斜率作为动弹性模量更能反映出本次试验砂岩的损伤演化规律。在此基础上,分析了干湿循环次数对总损伤变量和总损伤率演化的影响,得出干湿循环与动载耦合作用后砂岩的总损伤变量随着干湿循环次数的增加而增大,总损伤率随应变增长先增加后减小;建立了干湿循环和动载耦合作用下砂岩的动态本构模型并对其进行了验证,以期为深部地下岩体工程稳定性分析提供依据。
(YUAN Pu, MA Dong-dong. Damage Evolution and Constitutive Model of Coalmine Sandstone under Coupling Wetting-drying Cycles and Dynamic Loading[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 119-124. (in Chinese))
Coupling wetting-drying cycles and dynamic loading deteriorates the physical and mechanical properties of coalmine rock, damages underground structure and even induces geological hazards and accidents in coalmine underground engineering. In the light of longitudinal wave velocity variation and Weibull distribution statistical damage theory, we deduced the damage evolution equation of coalmine sandstone under coupling wetting-drying cycles and dynamic loading, and investigated the damage evolution with the dynamic elastic modulus determined by different methods. We found that the method of determining dynamic elastic modulus as the average slope between 30% and 70% peak stress on dynamic stress-strain curve is more suitable for the damage evolution rule of tested coalmine sandstone. Moreover, we further examined the influence of wetting-drying cycle on total damage variable and total damage ratio, and unveiled that under coupling wetting-drying cycles and dynamic loading, damage variable enlarged with the proceeding of cyclic wetting and drying, while damage ratio increased first and then reduced with the growth of dynamic strain. Finally, we built and validated a dynamic constitutive model for coalmine sandstone under coupling wetting-drying cycles and dynamic loading. The test results are expected to offer basis for the stability analysis in deep underground rock engineering.
[8]
袁璞, 马芹永. 干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究[J]. 岩土力学, 2013, 34(9): 2557-2562.
(YUAN Pu, MA Qin-yong. Split Hopkinson Pressure Bar Tests on Sandstone in Coalmine under Cyclic Wetting and Drying[J]. Rock and Soil Mechanics, 2013, 34(9): 2557-2562. (in Chinese))
[9]
DU B, BAI H. A Damage Constitutive Model of Red Sandstone under Coupling of Wet-dry Cycles and Impact Load[J]. Shock and Vibration, 2019,doi: 10.1155/2019/7692424.
[10]
SHI Z, LI J, ZHAO Y. Study on Damage Evolution and Constitutive Model of Sandstone under the Coupled Effects of Wetting-drying Cycles and Cyclic Loading[J]. Engineering Fracture Mechanics, 2021, 253: 107883.
[11]
LIANG Y, HUO R, SONG Z, et al. Macro-meso Deterioration Characteristics and Statistical Damage Constitutive Model for Acid-corroded Sandstone[J]. Journal of Building Engineering, 2023, 71: 106499.
[12]
HUANG X, PANG J, LIU G, et al. Experimental Study on Physicomechanical Properties of Deep Sandstone by Coupling of Dry-wet Cycles and Acidic Environment[J]. Advances in Civil Engineering, 2020, doi:10.1155/2020/2760952.
[13]
申林方, 董武书, 王志良, 等. 干湿循环与化学溶蚀作用下玄武岩传质-劣化过程的试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1):2662-2672.
(SHEN Lin-fang, DONG Wu-shu, WANG Zhi-liang, et al. Experimental Study on the Mass Transfer-deterioration Process of Basalt under Drying-wetting Cycles and Chemical Reaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Supp.1):2662-2672. (in Chinese))
[14]
夏万春, 王林峰, 张继旭, 等. 酸环境干湿循环作用下泥灰岩损伤劣化分析[J]. 工程地质学报, 2022, 30(6): 2006-2015.
(XIA Wan-chun, WANG Lin-feng, ZANG Ji-xu, et al. Damage and Deterioration Analysis of Marl under Dry Wet Cycle in Acid Environment[J]. Journal of Engineering Geology, 2022, 30(6): 2006-2015. (in Chinese))
[15]
CAO W G, ZHAO H, LI X, et al. Statistical Damage Model with Strain Softening and Hardening for Rocks under the Influence of Voids and Volume Changes[J]. Canadian Geotechnical Journal, 2010, 47(8): 857-871.
[16]
张超, 杨楚卿, 白允. 岩石类脆性材料损伤演化分析及其模型方法研究[J]. 岩土力学, 2021, 42(9): 2344-2354.
(ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of Damage Evolution and Its Model of Rock-like Brittle Materials[J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354. (in Chinese))
[17]
曹文贵, 赵衡, 李翔, 等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J]. 土木工程学报, 2012, 45(6): 139-145.
(CAO Wen-gui, ZHAO Heng, LI Xiang, et al. A Statistical Damage Simulation Method for Rock Full Deformation Process with Consideration of the Deformation Characteristics of Residual Strength Phase[J]. China Civil Engineering Journal, 2012, 45(6): 139-145. (in Chinese))
[18]
李修磊, 陈洪凯, 张金浩. 考虑初始空隙压密的岩石变形全过程本构模型[J]. 西南交通大学学报, 2022, 57(2): 314-321.
(LI Xiu-lei, CHEN Hong-kai, ZHANG Jin-hao. Statistical Damage Model for Whole Deformation and Failure Process of Rock Considering Initial Void Closure[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 314-321. (in Chinese))
[19]
曹文贵, 方祖烈, 唐学军. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6):628-633.
(CAO Wen-gui, FANG Zu-lie, TANG Xue-jun. A Study of Statistical Constitutive Model for Soft and Damage Rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6):628-633. (in Chinese))
[20]
蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学, 2021, 42(7):1894-1902.
(JIANG Hao-peng, JIANG An-nan, YANG Xiu-rong. Statistical Damage Constitutive Model of High Temperature Rock Based on Weibull Distribution and Its Verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902. (in Chinese))

基金

国家自然科学基金项目(52068016)

编辑: 占学军
PDF(7095 KB)

Accesses

Citation

Detail

段落导航
相关文章

/