官山河流域山洪预报产流机制辨析

黎淼, 唐文坚, 董林垚, 曾俣杰

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 102-110.

PDF(7349 KB)
PDF(7349 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 102-110. DOI: 10.11988/ckyyb.20240376
水灾害

官山河流域山洪预报产流机制辨析

作者信息 +

Runoff Generation Mechanisms of Flash Flood Forecasting in Guanshan River Basin

Author information +
文章历史 +

摘要

变化环境下复杂山区小流域山洪灾害频发,提高山洪预报效率及精度是山洪灾害防治体系建设的必然要求。水文模型是模拟降雨径流实现山洪预报的有效工具,明晰产流机制是高精度山洪预报的重要前提。为了探究在小、中、大、特大型4种等级山洪下官山河流域洪水径流对不同产流模式的响应情况,以新安江模型为基础,分别采用蓄满产流、超渗产流与混合产流模式对官山河流域展开山洪模拟分析。结果表明:垂向混合产流的各项精度评价优于超渗产流和蓄满产流,不同等级山洪下的NSE均值>0.7,表现出良好的适用性;超渗产流模式能够有效刻画暴雨下以地表径流为主的山洪产流过程,大型山洪下NSE均值达0.8,在捕捉洪峰方面优势明显。研究成果可为官山河流域山洪灾害防治提供理论与方法支撑,同时可为复杂山区小流域山洪预报提供参考。

Abstract

[Objectives] This study aims to improve the accuracy and efficiency of flash flood forecasting in the Guanshan River Basin and other similar small mountainous watersheds frequently affected by flood disasters by analyzing the runoff generation mechanisms of flash floods. By comparing the performance of saturation-excess, infiltration-excess, and hybrid runoff generation modes in simulating flash floods of different magnitudes, we also seek to overcome the limitations of single-mode simulation under complex terrain and different rainfall intensities. [Methods] The runoff generation module of the Xin’anjiang model was modified to simulate 38 flood events in the Guanshan River Basin (24 for calibration, 14 for validation) using saturation-excess, infiltration-excess, and hybrid runoff generation modes. Flood magnitudes were classified into small, medium, large, and extra-large according to the Specifications for Hydrological Information and Forecasting. Simulation results were evaluated using Nash-Sutcliffe efficiency coefficient (NSE), peak discharge error, and runoff depth error to compare the applicability and advantages of different runoff generation mechanisms. [Results] The vertical hybrid runoff generation mode demonstrated higher accuracy and stability across different flood magnitudes. It outperformed the other two modes in terms of NSE during both calibration and validation periods, with particularly strong performance in simulating extra-large floods. The saturation-excess mode performed better for small floods but was less stable for large and extra-large events. The infiltration-excess mode achieved the highest accuracy in simulating peak discharges of large floods, but performed relatively poorly in small and extra-large events. Further analysis of the runoff generation mechanisms indicated that runoff generation processes were closely related to rainfall characteristics, soil infiltration rates, and underlying surface conditions. Under intense and short-duration rainfall, infiltration-excess was the dominant mechanism, while under low-intensity and long-duration rainfall, saturation-excess prevailed. The vertical hybrid mode comprehensively integrates both mechanisms, dynamically adjusting the runoff generation approach based on varying rainfall conditions. It enabled effective simulation of flash flood processes under different rainfall scenarios. Additionally, this mode showed higher precision in simulating the recession processes, as it better reflected river basin storage states and the dynamics of interflow and groundwater runoff. [Conclusions] The vertical hybrid runoff generation mode demonstrates significant advantages in simulating flash floods in the Guanshan River Basin, providing robust support for improving the accuracy and efficiency of flash flood forecasting in this area. These findings not only provide a theoretical basis for flood prevention and disaster mitigation in the Guanshan River Basin but also offer innovative approaches for flash flood forecasting in complex mountainous watersheds. The innovation of this study lies in its comprehensive consideration of multiple runoff generation mechanisms and its validation of the hybrid mode’s adaptability under different rainfall conditions through comparative analyses. Future research will further refine the runoff generation module by incorporating more detailed physical processes and parameterization methods, while exploring the coupled applications of hydrological and hydrodynamic models to enhance the model’s capability in simulating complex hydrological processes and provide deeper insights into flood evolution in small mountainous watersheds.

关键词

山洪灾害 / 洪水预报 / 产流机制 / 官山河流域

Key words

flash flood disaster / flood forecasting / runoff generation mechanism / Guanshan River Basin

引用本文

导出引用
黎淼, 唐文坚, 董林垚, . 官山河流域山洪预报产流机制辨析[J]. 长江科学院院报. 2025, 42(6): 102-110 https://doi.org/10.11988/ckyyb.20240376
LI Miao, TANG Wen-jian, DONG Lin-yao, et al. Runoff Generation Mechanisms of Flash Flood Forecasting in Guanshan River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(6): 102-110 https://doi.org/10.11988/ckyyb.20240376
中图分类号: P331    TV124   

参考文献

[1]
郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018, 49(9):1123-1136.
(GUO Liang, DING Liu-qian, SUN Dong-ya, et al. Key Techniques of Flash Flood Disaster Prevention in China[J]. Journal of Hydraulic Engineering, 2018, 49(9):1123-1136. (in Chinese))
[2]
唐文坚, 范仲杰, 董林垚, 等. 暴雨型山洪灾害链监测预警研究与展望[J]. 长江科学院院报, 2023, 40(7):73-79.
摘要
暴雨型山洪及其链生过程是山区常见的致灾隐患,因其点多面广、成因复杂,加之相关过程常表现显著的突发性、局地性与隐蔽性等特点,增加了灾害早期识别与监测预警的难度。目前,山洪灾害链转化机理与监测预警研究是防灾减灾领域具有综合交叉特色的国际前沿与热点问题。为此,通过梳理暴雨型山洪灾害链国内外研究现状与趋势,分析了相关研究中亟需突破的关键科学与技术问题,并针对性提出了研究方向和研究展望。其中亟待突破的关键科学与技术问题有:如何揭示暴雨-洪水-滑坡(崩塌)-泥石流的同源链生转化机理,如何建立灾害链精准监测与稳定传输技术,如何构建灾害链预警指标体系与动态预警平台。建议研究方向为:暴雨型山洪灾害链致灾因子辨识研究,暴雨型山洪灾害链关键要素监测预警技术研发,山区小流域山洪灾害链监测预警平台研发,暴雨型山洪灾害链监测预警技术集成与示范。研究展望包括:突出多科学交叉、多手段融合,以“致灾因子辨识-关键技术研发-软件平台构建-集成应用示范”为研究主线,最终在灾害链驱动演化机理、精准监测与动态预警技术等方面取得突破和创新,预期成果可为提升山洪灾害链防御能力、推动生态可持续和流域高质量发展提供科技支撑。
(TANG Wen-jian, FAN Zhong-jie, DONG Lin-yao, et al. Research Framework and Prospect for Monitoring and Early Warning of Rainstorm-induced Mountain Torrent Disaster Chain[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(7): 73-79. (in Chinese))
[3]
吕彩霞, 轩玮. 清华大学水利水电工程系教授田富强:注重应用达尔文范式和前沿技术推动水文科技进步[J]. 中国水利, 2023 (16):22-25.
( Cai-xia, XUAN Wei. Professor Tian Fuqiang from Department of Hydrau-lic Engineering of Tsinghua University:Highlighting Ap-plication of Darwin’s Paradigm and Frontier Technologies to Advance Hydrological Science and Technology[J]. China Water Rources, 2023 (16):22-25. (in Chinese))
[4]
DUNNE T, BLACK R D. Partial Area Contributions to Storm Runoff in a Small New England Watershed[J]. Water Resources Research, 1970, 6(5): 1296-1311.
[5]
陆旻皎. 新安江模型研究的回顾和展望[J]. 水利学报, 2021, 52(4):432-441.
(LU Min-jiao. Recent and Future Studies of the Xinanjiang Model[J]. Journal of Hydraulic Engineering, 2021, 52(4): 432-441. (in Chinese))
[6]
龚志惠, 李红霞, 尹兆锐, 等. 黄土丘陵沟壑区小流域洪水预报研究[J]. 水电能源科学, 2022, 40(7):80-83.
(GONG Zhi-hui, LI Hong-xia, YIN Zhao-rui, et al. Flood Forecasting of Small Watershed in Loess Hilly and Gully Region[J]. Water Resources and Power, 2022, 40(7): 80-83. (in Chinese))
[7]
李致家, 霍文博, 张珂. 格林-安普特降雨径流模型改进及初步应用[J]. 河海大学学报(自然科学版), 2020, 48(5): 385-391.
(LI Zhi-jia, HUO Wen-bo, ZHANG Ke. Improvement and Preliminary Application of Green-Ampt rainfall-runoff Model[J]. Journal of Hohai University (Natural Sciences), 2020, 48(5): 385-391. (in Chinese))
[8]
李玉荣, 朱丹, 甘晓雪, 等. 汉江上游典型流域产流机制辨析[J]. 人民长江, 2023, 54(增刊1): 50-53.
(LI Yu-rong, ZHU Dan, GAN Xiao-xue, et al. Differentiation and Analysis on Water Yield Mechanism of Typical Watershed in Upper Hanjiang River[J]. Yangtze River, 2023, 54(Supp.1): 50-53. (in Chinese))
[9]
丁启, 王宗志, 刘克琳, 等. 基于水文模型的山东半岛典型流域产流模式探讨[J]. 水文, 2024, 19(3):1-13.
(DING Qi, WANG Zong-zhi, LIU Ke-lin, et al. Exploration of Runoff-Generating Pattern in Typical Watersheds of Shandong Peninsula Based on Hydrological Models[J]. Journal of China Hydrology, 2024, 19(3): 1-13. (in Chinese))
[10]
张旭旻, 瞿思敏, 李倩, 等. 基于协整理论的淮河流域上游洪水预报实时校正方法[J]. 水资源保护, 2022, 38(6): 88-95,145.
(ZHANG Xu-min, QU Si-min, LI Qian, et al. Real-time Correction Method of Flood Forecasting for the Upper Huaihe River Basin Based on Cointegration Theory[J]. Water Resources Protection, 2022, 38(6): 88-95,145. (in Chinese))
[11]
李志超, 邬强, 胡彩虹, 等. 基于LSTM误差校正蓄满-超渗兼容模型的山洪预报研究[J]. 武汉大学学报(工学版), 2023, 56(10): 1161-1171.
(LI Zhi-chao, WU Qiang, HU Cai-hong, et al. Flash Flood Prediction Based on LSTM Error Correction Saturation-excess and Infiltration-Excess Compatible Model[J]. Engineering Journal of Wuhan University, 2023, 56(10): 1161-1171. (in Chinese))
[12]
吴金津, 董文逊, 张艳军, 等. 多源降雨数据在官山河山洪预报中的应用[J]. 武汉大学学报(工学版), 2021, 54(1): 72-81.
(WU Jin-jing, DONG Wen-xun, ZHANG Yan-jun, et al. Application of Multi-source Rainfall Data in the Flash Flood Forecast of Guanshan River Basin[J]. Engineering Journal of Wuhan University, 2021, 54(1): 72-81. (in Chinese))
[13]
韩培, 任洪玉, 王思腾, 等. 小尺度山洪灾害区下垫面特征分析:以官山河流域为例[J]. 长江科学院院报, 2020, 37(7): 68-74.
摘要
为响应国家加强小区域山洪灾害建设和防范预警要求,给小尺度山洪灾害区域建设和预警提供基础数据支撑,以官山河流域为例,采用地学统计、植被指数计算、面向对象与人机交互解译、空间叠加分析、野外调查等方法,获取流域地形、坡度、植被覆盖度、土地利用类型等下垫面特征,分析潜在受灾村落和人口。结果表明:官山河流域地势中间低、边缘高,最低点为流域出水口,平均历史受灾海拔、坡度分别为415 m和21°;平均植被覆盖度为71%,主要土地利用类型为林(草)地,历史受灾主要在低植被的沿河、沟、道路周边;居民房屋为山洪灾害重点承灾体,占总面积的1%,裸地、坡耕地占总面积的2%;潜在受灾房屋主要集中在官山河、袁家河、吕家河、西河两侧地势低的位置,受灾总人口为8 106人,2 023户。官山河流域出口处的弯曲、窄河段、上下游卡口区条件,不利于快速泄洪,易引发山洪灾害。在强降雨下,裸地、低植被陡坡地易产生山洪,沿河、道路周边低植被覆盖的村落易遭受山洪灾害。官山河流域共有12个村存在潜在受灾威胁,需做好山洪灾害预警和防范建设;五龙庄、大河湾、赵家坪、吕家河、马蹄山、西河、官亭村是山洪灾害防御建设的重点。
(HAN Pei, REN Hong-yu, WANG Si-teng, et al. Characteristics of Underlying Surface in Small-scale Mountain Flood Disaster Area: Case Study on Guanshan River Basin[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(7): 68-74. (in Chinese))
The purpose of this study is to offer basic data support for the construction of small-scale mountain flood disaster prevention and early warning in response to national requirements. The Guanshan River drainage basin is taken as a case study. By using multiple approaches including geoscience statistics, vegetation index calculation, object-oriented and human-computer interaction interpretation, spatial superposition analysis, field survey, and etc., the underlying surface characteristics, such as the topography, slope, vegetation coverage, and land use pattern are obtained, and the potentially affected villages and populations are comprehensively analyzed. The Guanshan River Basin is characterized by low middle part and high edges with the lowest point as the basin's outlet. The average historical disaster elevation and slope are 415 m and 21°,respectively. The average vegetation coverage of the Guanshan River Basin is 71%. Most of the basin is covered by forest and grass, and historical disasters mainly happened in less-vegetated area along rivers, ditches and roads. Residential houses as the major disaster-bearing body for mountain flood disasters, account for 1% of the total area; bare land and sloping land account for 2% of the total area. Potential disaster-stricken houses mainly concentrate in the lower positions of Guanshan River, Yuanjia River, Lyujia River and Xihe River, with a total of 8,106 people and 2,023 households affected. The bend, narrow river segment, and upstream and downstream bayonet area at the exit of Guanshan River Basin are not conducive to rapid flood discharge and easily lead to mountain flood disasters. Under heavy rainfall, bare land and steep slope in low-vegetation area are prone to breed mountain flood disaster, while less-vegetated along rivers and roads are subjected to mountain flood disasters. Early warning and prevention work should be strengthened as twelve villages in the Guanshan River Basin are threatened by potential hazards, among which Wulongzhuang, Dahewan, Zhaojiaping, Lyujiahe, Horseshoe Mountain, Xihe and Guanting Village are key points of mountain flood disaster prevention and construction.
[14]
赵人俊, 王佩兰, 胡凤彬. 新安江模型的根据及模型参数与自然条件的关系[J]. 河海大学学报, 1992, 20(1):52-59.
(ZHAO Ren-jun, WANG Pei-lan, HU Feng-bin. Relations between Parameter Values and Corresponding Natural Conditions of Xinanjiang Model[J]. Journal of Hohai University, 1992, 20(1): 52-59. (in Chinese))
[15]
李致家, 于莎莎, 李巧玲, 等. 降雨-径流关系的区域规律[J]. 河海大学学报(自然科学版), 2012, 40(6): 597-604.
(LI Zhi-jia, YU Sha-sha, LI Qiao-ling, et al. Regional Pattern of Rainfall-runoff Relationship[J]. Journal of Hohai University (Natural Sciences), 2012, 40(6): 597-604. (in Chinese))
[16]
闫宝伟, 李正坤, 段美壮, 等. 基于Erlang分布蓄水容量曲线的流域产流模型[J]. 水科学进展, 2021, 32(1): 120-126.
(YAN Bao-wei, LI Zheng-kun, DUAN Mei-zhuang, et al. A Watershed Runoff Yield Model Based on Erlang Distribution Water Storage Capacity Curve[J]. Advances in Water Science, 2021, 32(1): 120-126. (in Chinese))
[17]
程银才, 王军, 李明华. 基于霍顿下渗公式超渗产流计算几个问题的探讨[J]. 水文, 2016, 36(5): 14-16.
(CHENG Yin-cai, WANG Jun, LI Ming-hua. Some Problems in Runoff Yield Excess Calculation Based on Horton Infiltration Formula[J]. Journal of China Hydrology, 2016, 36(5): 14-16. (in Chinese))
[18]
STEWART R D. A Dynamic Multidomain Green-Ampt Infiltration Model[J]. Water Resources Research, 2018, 54(9): 6844-6859.
[19]
张旭旻, 瞿思敏, 石朋, 等. 淮河上游分布式垂向混合产流模型及其应用[J]. 水电能源科学, 2021, 39(11):35-39.
(ZHANG Xu-min, QU Si-min, SHI Peng, et al. Distributed Vertical Mixed Runoff Model in the Upper Reaches of Huaihe River and Its Application[J]. Water Resources and Power, 2021, 39(11): 35-39. (in Chinese))
[20]
江平, 陈璐, 易彬, 等. 超渗-蓄满混合产流公式在梅江流域的适用性研究[J]. 水电能源科学, 2022, 40(10): 14-18.
(JIANG Ping, CHEN Lu, YI Bin, et al. Mixed Runoff Generation Model and Its Applicability in Mei River Basin[J]. Water Resources and Power, 2022, 40(10): 14-18. (in Chinese))
[21]
韩潇, 张亚萍, 周国兵, 等. 基于VIC模型的涪江流域径流模拟[J]. 水文, 2022, 42(5): 76-81.
(HAN Xiao, ZHANG Ya-ping, ZHOU Guo-bing, et al. Discharge Simulation Based on VIC Model over the Fujiang River Basin[J]. Journal of China Hydrology, 2022, 42(5): 76-81. (in Chinese))
[22]
王庆平, 沈国华, 王红艳. 垂向混合产流模型在不同地区的应用与改进[J]. 节水灌溉, 2012(5): 11-15.
摘要
基于垂向混合产流模型的结构特征选择不同地区加以应用比较,率定了模型在西北干旱半干旱地区的参数,在此基础之上进行了洪水模拟计算,分析对比了模型在不同地区的应用和洪水模拟结果不合格的原因。并通过双源蒸发分时间计算和格林—安普特下渗公式的应用计算,使模型在北方干旱地区和南方湿润地区也具有一定的适应性、成熟性和有效性。
(WANG Qing-ping, SHEN Guo-hua, WANG Hong-yan. Application and Improvement of Vertical-mixed Runoff Model in Different Regions[J]. Water Saving Irrigation, 2012(5): 11-15. (in Chinese))

基金

国家重点研发计划项目(2021YFE0111900)

编辑: 占学军
PDF(7349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/