基于多目标飞蛾扑火算法的水光互补系统优化调度

李泽宏, 袁肖峰, 肖鹏, 张太衡, 覃晖

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 203-209.

PDF(5874 KB)
PDF(5874 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (6) : 203-209. DOI: 10.11988/ckyyb.20240313
水库群多目标优化调度研究专栏

基于多目标飞蛾扑火算法的水光互补系统优化调度

作者信息 +

Optimal Scheduling of Hydro-photovoltaic Complementary Systems Based on Multi-objective Moth-flame Algorithm

Author information +
文章历史 +

摘要

水电作为灵活的可调节性能源,与流域周边的光伏电站打捆运行,形成水光互补系统,可有效发挥多能源互补优势。然而,随着电源种类的增加,调度主体的目标与约束条件也随之改变,水光互补系统优化调度问题的求解变得愈发复杂。现有水库调度研究以纯水电调度为主,较少考虑新能源消纳,传统水光互补系统优化调度,一般多以发电效益目标为主,无法满足多目标综合运用的需求。为了 避免飞蛾扑火优化算法(MFO)陷入局部最优,改进后的多目标飞蛾扑火算法从更新公式、飞蛾直线飞行路径的启发和火焰种群更新策略3个方面对MFO算法进行改进,为了区分这些在Pareto支配下不受彼此支配的个体,结合参考点提出了R支配,两者结合形成了一种新的性能良好的多目标进化算法R-IMOMFO。综合考虑水光互补系统发电效益和容量效益指标,构建了水光互补系统多目标优化调度模型,并采用R-IMOMFO算法对模型进行求解,针对丰、平、枯3种典型年提出了优化调度方案,结果表明建立的多目标优化模型可以较好协调水光互补系统发电效益、容量效益间的关系,可为水光互补系统多目标优化调度方案编制提供参考。

Abstract

[Objectives] Existing reservoir scheduling studies mainly focus on pure hydropower scheduling, with limited consideration of renewable energy integration. Traditional optimal scheduling of hydro-photovoltaic complementary systems typically prioritizes power generation benefits, which fails to meet the requirements of multi-objective comprehensive utilization. Moreover, compared with pure hydropower scheduling, the optimal scheduling of hydro-photovoltaic complementary systems is more complex to solve. This study aims to establish a multi-objective optimal scheduling model for hydro-photovoltaic complementary systems with the objectives of maximizing annual power generation benefits and maximizing the minimum output during specific periods. [Methods] To overcome the local optimum issue in the Moth-Flame Optimization (MFO) algorithm, improvements were made to the multi-objective MFO from three aspects: update formula, inspiration from moths’ linear flight paths, and flame population update strategy. To distinguish individuals that are mutually non-dominated under Pareto dominance, R-domination incorporating reference points was introduced. The combination of these two led to the development of a new high-performance multi-objective evolutionary algorithm: R-IMOMFO. A multi-objective optimization scheduling model for hydro-photovoltaic complementary systems was established, considering both power generation benefits and capacity benefits, and the model was solved using the R-IMOMFO algorithm. [Results] The R-IMOMFO algorithm demonstrated fast convergence, strong resistance to premature convergence, and high accuracy, proving to be an effective method for solving complex multi-objective optimization problems. Using the R-IMOMFO algorithm, non-dominated scheduling solution sets were obtained under three runoff scenarios—wet year, normal year, and dry year—for both power generation and capacity benefits. For each typical year, two extreme schemes and one intermediate scheme were selected for comparative analysis. This enabled scheduling operators to select more appropriate solutions based on their prioritization of different objectives. [Conclusions] The proposed multi-objective optimization model effectively coordinates the relationship between power generation benefits and capacity benefits in hydro-photovoltaic complementary systems, providing data support for decision-making in multi-objective optimal scheduling.

关键词

发电调度 / 水光互补 / 飞蛾扑火算法 / 发电效益 / 容量效益 / 多目标优化调度

Key words

hydropower scheduling / hydro-photovoltaic complementarity system / moth-flame optimization algorithm / power generation benefits / storage capacity benefits / multi-objective optimized scheduling

引用本文

导出引用
李泽宏, 袁肖峰, 肖鹏, . 基于多目标飞蛾扑火算法的水光互补系统优化调度[J]. 长江科学院院报. 2025, 42(6): 203-209 https://doi.org/10.11988/ckyyb.20240313
LI Ze-hong, YUAN Xiao-feng, XIAO Peng, et al. Optimal Scheduling of Hydro-photovoltaic Complementary Systems Based on Multi-objective Moth-flame Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(6): 203-209 https://doi.org/10.11988/ckyyb.20240313
中图分类号: TV697.1   

参考文献

[1]
苑如玮, 王浩, 刘攀, 等. 洞庭湖四水流域水库群联合防洪优化调度[J]. 人民长江, 2024, 55(4):58-63,80.
(YUAN Ru-wei, WANG Hao, LIU Pan, et al. Optimal Joint Flood Control Operation of Reservoir Group in the Four Rivers, Dongting Lake Basin[J]. Yangtze River, 2024, 55(4): 58-63, 80. (in Chinese))
[2]
程毅. 基于差分进化—自适应Metropolis算法的嘉陵江水库群联合供水调度研究[J]. 武汉大学学报(工学版), 2024, 57(9):1-13.
(CHENG Yi. Study on Joint Water Supply Dispatching of Jialing River Reservoirs Based on Differential Evolution-adaptive Metropolis Algorithm[J]. Engineering Journal of Wuhan University, 2024, 57(9):1-13. (in Chinese))
[3]
汪涛, 徐杨, 刘亚新, 等. 基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度[J]. 长江科学院院报, 2023, 40(12):30-36.
摘要
金沙江下游—三峡已形成六库联合调度格局,调度维数增多,约束庞杂交织,优化目标多样,给调度方案制定带来极大困难。针对传统粒子群算法求解调度模型寻优能力不足的难题,提出多种群引力粒子群算法,建立优化调度模型并应用改进算法求解。算法测试和应用结果表明,多种群引力粒子群算法寻优性能更加先进,更适用于求解梯级水库优化调度问题。实例表明,上游龙头电站通过减少自身发电量可以使下游电站和梯级发电量增加。
(WANG Tao, XU Yang, LIU Ya-xin, et al. Optimal Operation of Cascade Reservoirs in the Lower Reaches of Jinsha River to the Three Gorges Based on Multi-group Gravitational Particle Swarm Algorithm[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(12): 30-36. (in Chinese))
[4]
张启凡, 胡铁松, 戴凌全, 等. 考虑生态流量的梯级水库主从博弈优化调度研究[J]. 水资源保护, 2024, 40(5):69-77,121.
(ZHANG Qi-fan, HU Tie-song, DAI Ling-quan, et al. Leader-follower Game Optimal Operation of Cascade Reservoirs Considering Ecological Flow[J]. Water Resources Protection, 2024, 40(5):69-77,121. (in Chinese))
[5]
林凡奇, 周研来, 薛凯元. 考虑生态流量约束的梯级水库分期消落水位多目标优化调度[J]. 水生态学杂志, 2024, 45(1):10-17.
(LIN Fan-qi, ZHOU Yan-lai, XUE Kai-yuan. Optimizing the Multi-objective Operation of Seasonally Drawdown-limited Water Levels for Cascaded Reservoirs Constrained by Ecological Flow[J]. Journal of Hydroecology, 2024, 45(1):10-17. (in Chinese))
[6]
MIRJALILI S. Moth-flame Optimization Algorithm:A Novel Nature-inspired Heuristic Paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249.
[7]
ZHANG Z D, QIN H, YAO L Q, et al. Improved Multi-objective Moth-flame Optimization Algorithm Based on R-domination for Cascade Reservoirs Operation[J]. Journal of Hydrology, 2020, 581: 124431.

基金

国家自然科学基金项目(51979113)

编辑: 刘运飞
PDF(5874 KB)

Accesses

Citation

Detail

段落导航
相关文章

/