pb应力路径下堆石料力学特性试验研究

潘家军, 王俊鹏, 周跃峰, 万航, 孙向军, 韩冰

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (5) : 147-154.

PDF(8709 KB)
PDF(8709 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (5) : 147-154. DOI: 10.11988/ckyyb.20240259
岩土工程

pb应力路径下堆石料力学特性试验研究

作者信息 +

Experimental Study on Mechanical Properties of Rockfill Materials under Constant p and Constant b Stress Paths

Author information +
文章历史 +

摘要

针对某典型筑坝堆石料,开展了系列等pb应力路径下的真三轴固结排水剪切试验,探讨了球应力p、中主应力系数b和初始干密度ρ0对堆石料应力-应变规律、强度特性以及π平面上应力-应变增量方向非共轴特性的影响。在实测试验数据的基础上对比分析了考虑中主应力影响下常用强度准则对堆石料强度的适用性。结果表明:①随着球应力p与初始干密度ρ0的增大,堆石料的初始剪切模量Ei与峰值强度qmax均随之增大。②球应力p增大会抑制剪胀特性;初始干密度高时试样更容易进入剪胀状态;随中主应力系数b的增大,峰值强度qmax减小,剪胀特性增强。③Lade-Duncan强度准则能够较好地描述堆石料的非线性强度特性。④试样初始剪切阶段,非共轴性最强,在试样接近失稳破坏时,应力应变增量方向逐渐趋于共轴。⑤非共轴性随着b的增大呈现先增大后减小的趋势;随着p的增大,非共轴性逐渐减弱;随着ρ0的增大,非共轴性逐渐增强。

Abstract

[Objective] Under the actual filling conditions of high rockfill dams, rockfill materials are typically subjected to complex three-dimensional stress states. This study aims to investigate the effects of spherical stress (p), intermediate principal stress coefficient (b), and initial dry density ( ρ0) on the stress-strain relationships, strength characteristics, and non-coaxiality of stress-strain increment directions on the π-plane of rockfill materials. [Methods] Consolidated-drained true triaxial shear tests were conducted on typical rockfill materials for dam construction with constant p and constant b stress paths under three-dimensional conditions involving different p, b, and ρ0. Based on experimentally measured data, conventional strength criteria considering intermediate principal stress effects were comparatively analyzed for their applicability to rockfill material strength. [Results] The results showed that: (1) as p increased, the q- ε1 relationship curves exhibited a progressively steeper strain-hardening trend. The initial shear modulus (Ei) increased correspondingly, and peak shear strength (qmax) significantly enhanced. Shear contraction grew while dilation development was suppressed, and the failure stress ratio (Mb) gradually decreased as p increased. (2) With increasing b, both Ei and qmax progressively declined. Reduced shear contraction made the rockfill materials transition more rapidly into dilation, with increasingly significant dilatancy. Mb demonstrated a downward trend. (3) As ρ0 increased, both Ei and qmax increased markedly. Rockfill materials entered dilation earlier with progressively greater dilatancy, and Mb exhibited an upward trend. [Conclusion] The conclusions are as follows: (1) an increase in p significantly enhances the shear strength of rockfill materials, and the influence of b on its strength progressively diminishes. As ρ0 rises, both the initial shear modulus and shear strength increase markedly, highlighting the necessity for strict quality control during dam construction. (2) The Lade-Duncan strength criterion effectively characterizes the nonlinear strength characteristics of rockfill materials, while the Mohr-Coulomb criterion yields conservative predictions due to its neglect of intermediate principal stress effects. (3) Non-coaxiality between stress and strain increment directions is observed on the π-plane during testing. This non-coaxial behavior is most pronounced during the initial shear stage, and it gradually transitions toward coaxiality as the specimen approaches instability failure. (4) The non-coaxiality of rockfill materials initially increases and then decreases with increasing b. It gradually weakens with increasing p, with the weakening rate diminishing, and it intensifies with higher ρ0 with a progressively faster intensifying rate.

关键词

堆石料 / 真三轴试验 / 应力-应变关系 / 剪胀性 / 非共轴性

Key words

rockfill material / true triaxial test / stress-strain relationship / dilatancy / non-coaxiality

引用本文

导出引用
潘家军, 王俊鹏, 周跃峰, . pb应力路径下堆石料力学特性试验研究[J]. 长江科学院院报. 2025, 42(5): 147-154 https://doi.org/10.11988/ckyyb.20240259
PAN Jia-jun, WANG Jun-peng, ZHOU Yue-feng, et al. Experimental Study on Mechanical Properties of Rockfill Materials under Constant p and Constant b Stress Paths[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(5): 147-154 https://doi.org/10.11988/ckyyb.20240259
中图分类号: TU43 (土力学)   

参考文献

[1]
张宗亮. 特高心墙堆石坝筑坝关键技术与创新应用[M]. 北京: 中国水利水电出版社, 2020.
(ZHANG Zong-liang. Key Technologies and Innovative Applications of Extra-high Core Wall Rock-fill Dam[M]. Beijing: China Water & Power Press, 2020.) (in Chinese)
[2]
潘家军, 程展林, 余挺, 等. 不同中主应力条件下粗粒土应力变形特性试验研究[J]. 岩土工程学报, 2016, 38(11):2078-2084.
(PAN Jia-jun, CHENG Zhan-lin, YU Ting, et al. Experimental Study on Stress-strain Characteristics of Coarse-grained Soil under Different Intermediate Principal Stresses[J]. Chinese Journal of Geotechnical Engineering,2016, 38(11):2078-2084.) (in Chinese)
[3]
殷建华, 周万欢, Md. Kumruzzaman, 等. 新型混合边界真三轴仪加载装置及岩土材料试验结果[J]. 岩土工程学报, 2010, 32(4): 493-499.
(YIN Jian-hua, ZHOU Wan-huan, MD. KUMRUZZAMAN, et al. New Mixed Boundary True Triaxial Loading Device for Testing Study on 3-D Stress-strain-strength Behaviour of Geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 493-499.) (in Chinese)
[4]
马刚, 刘嘉英, 常晓林, 等. 堆石体在真三轴应力状态下的非共轴性与剪胀特性[J]. 中南大学学报(自然科学版), 2016, 47(5):1697-1707.
(MA Gang, LIU Jia-ying, CHANG Xiao-lin, et al. Non-coaxiality and Dilatancy of Rockfill Materials under True Triaxial Stress Condition[J]. Journal of Central South University (Science and Technology), 2016, 47(5):1697-1707.) (in Chinese)
[5]
王远. 堆石料真三轴复杂应力路径条件下力学特性研究[D]. 北京: 清华大学, 2018.
(WANG Yuan. Study on Mechanical Properties of Rockfill under True Triaxial Complex Stress Path Conditions[D]. Beijing: Tsinghua University, 2018.) (in Chinese)
[6]
施维成, 朱俊高, 代国忠, 等. 球应力和偏应力对粗粒土变形影响的真三轴试验研究[J]. 岩土工程学报, 2015(5):776-783.
(SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, et al. True Triaxial Tests on Influence of Spherical and Deviatoric Stresses on Deformation of Coarse-grained Soil[J]. Chinese Journal of Geotechnical Engineering, 2015(5):776-783.) (in Chinese)
[7]
刘超, 尹思禹, 张锦, 等. 深部采动应力条件下砂岩破裂的声发射和能量演化规律研究[J]. 采矿与安全工程学报, 2022, 39(3): 470-479.
(LIU Chao, YIN Si-yu, ZHANG Jin, et al. Acoustic Emission and Energy Evolution of Sandstone Failure Subjected to Deep Mining Stress[J]. Journal of Mining & Safety Engineering, 2022, 39(3): 470-479.) (in Chinese)
[8]
沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
(SHEN Zhu-jiang. Theoretical Soil Mechanics[M]. Beijing: China Water & Power Press, 2000.) (in Chinese)
[9]
高莲士, 汪召华, 宋文晶. 非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用[J]. 水利学报, 2001(10):1-7.
(GAO Lian-shi, WANG Zhao-hua, SONG Wen-jing. The Application of Nonlinear Uncoupled K-G Model to Deformation Analysis of High Concrete Face Rockfill Dam[J]. Journal of Hydraulic Engineering, 2001(10):1-7.) (in Chinese)
[10]
程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467.
(CHENG Zhan-lin, JIANG Jing-shan, DING Hong-shun, et al. Nonlinear Dilatancy Model for Coarse-grained Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467.) (in Chinese)
[11]
GUTIERREZ M, ISHIHARA K. Non-coaxiality and Energy Dissipation in Granular Materials[J]. Soils and Foundations, 2000, 40(2): 49-59.
[12]
钱建固, 黄茂松, 杨峻. 真三维应力状态下土体应变局部化的非共轴理论[J]. 岩土工程学报, 2006, 28(4):510-515.
(QIAN Jian-gu, HUANG Mao-song, YANG Jun. Effect of Non-coaxial Plasticity on Onset Strain Localization in Soils under 3D Stress Condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 510-515.) (in Chinese)
[13]
黄茂松, 孙海忠, 钱建固. 粗粒土的非共轴性及其离散元数值模拟[J]. 水利学报, 2010, 41(2): 173-181.
(HUANG Mao-song, SUN Hai-zhong, QIAN Jian-gu. Non-coaxial Behavior of Coarse Granular Aggregates Simulated by DEM[J]. Journal of Hydraulic Engineering, 2010, 41(2): 173-181.) (in Chinese)
[14]
蔡燕燕, 俞缙, 余海岁, 等. 考虑主应力轴旋转的砂土变形特性试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 417-424.
(CAI Yan-yan, YU Jin, YU Hai-sui, et al. Experimental Study of Deformation Behaviour of Sand under Rotation of Principal Stress Axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 417-424.) (in Chinese)
[15]
周跃峰, 潘家军, 程展林, 等. 应力洛德角旋转路径下粗粒土的力学行为[J]. 岩土工程学报, 2020, 42(增刊1): 55-59.
(ZHOU Yue-feng, PAN Jia-jun, CHENG Zhan-lin, et al. Mechanical Behavior of Coarse-grained Soil under the Rotation Path of Stress Lord Angle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Supp.1): 55-59.) (in Chinese)
[16]
GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019.) (in Chinese)
[17]
朱俊高, 翁厚洋, 吴晓铭, 等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8): 2394-2398.
(ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al. Experimental Study of Compact Density of Scaled Coarse-grained Soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2394-2398.) (in Chinese)
[18]
姜景山, 左永振, 程展林, 等. 粗粒土力学特性大型平面应变试验研究[J]. 长江科学院院报, 2025, 42(1): 129-135.
摘要
土石坝填料一般处于平面应变状态,目前填料力学特性研究基本采用大型三轴试验。由于三轴应力状态下中主应力等于小主应力,平面应变状态下大坝填料的力学性能会被低估。为充分认识填料潜能,科学设计和合理评估土石坝,有必要对填料开展平面应变试验研究。应用大型真三轴仪对填料进行了大型平面应变试验,共开展了4种不同初始干密度的粗粒土平面应变各向等压固结排水剪切试验。结果表明:应力-应变关系主要为应变硬化型,应力曲线呈爬升型,体变表现为剪缩。某一小主应力下,大小主应力之差的最大值随初始干密度的增大呈线性增大;初始干密度一定时,大小主应力之差的最大值与小主应力呈线性关系增大。初始剪切阶段,小主应力一定时,偏应力与球应力之比曲线斜率随初始干密度的增大而增大,随剪切变形的发展,不同初始干密度的应力比曲线逐渐趋于接近。偏应力随球应力的增大单调增加则对应应变硬化型,若偏应力随球应力的增大先增加后减小则对应应变软化型。相同小主应力时,初始弹性模量随初始干密度的增大而增大,近似呈线性关系;某一初始干密度下,初始弹性模量随小主应力的增大基本呈线性关系增大。中主应力系数随大主应力方向应变的增大而增大,曲线形态呈三折线形,初始剪切阶段增长较为缓慢,随剪切变形的增大增长相对加快并呈线性关系增大,如曲线末端下弯为应变硬化型,曲线末端上翘为应变软化型。
(JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Mechanical Properties of Coarse-grained Soil in Large-scale Plane Strain Tests[J]. Journal of Changjiang River Scientific Research Institute, 2025, 42(1): 129-135.) (in Chinese)

基金

国家自然科学基金面上项目(51979010)
中央公益性科研院所基本科研业务费项目(CKSF2023318/YT)

编辑: 陈敏
PDF(8709 KB)

Accesses

Citation

Detail

段落导航
相关文章

/