PDF(10503 KB)
PDF(10503 KB)
PDF(10503 KB)
基于GIS的马尾皂灌区供水保障
Water Supply Reliability in Maweizao Irrigation Area Based on GIS
[Objective] To address the mismatch between traditional rainfall analysis methods (April to October) for hilly irrigation areas in south China and actual intra-seasonal water demand during rice growth stages (late rice from July to October), this study focuses on intra-seasonal rainfall during the rice growth stages, integrating GIS technology to investigate the water supply reliability of the Maweizao irrigation area. [Methods] Using daily meteorological data from 1989 to 2019 in the irrigation area, the intra-seasonal rainfall frequency analysis method was employed to identify typical representative years and characteristic values for normal years (P=50%), moderately dry years (P=75%), and dry years (P=90%). The FAO Penman-Monteith method and water balance method were then used to calculate the crop water requirements and net irrigation water requirements for rice. [Results]The results showed that: (1) In dry years, the intra-seasonal rainfall during the late rice growth stages (160 mm) accounted for only 21.2% of the total rainfall from April to October (755 mm). Moreover, a mismatch was observed between the rainfall peak (August) and the critical water demand period (booting to heading stage, September). This led to 14% higher net field irrigation water requirements (560 mm) calculated by intra-seasonal rainfall frequency analysis compared to traditional methods, accurately reflecting the typical contradiction in hilly irrigation areas where there was “no rain during water demand periods but excessive rain during non-demand periods.” (2) GIS-based spatial simulations revealed a distinct bimodal structure in the irrigation area during dry years. Croplands near the main water source (Maweizao Reservoir) benefited from sufficient storage capacity (27.02 million m3) and a canal system integrity rate above 85%, achieving a water supply reliability rate greater than 80%, thus forming a high-yield and stable-production core zone. Areas dependent on small reservoirs for water regulation and storage, where storage capacity utilization declined to 60% due to sedimentation, had a water supply reliability rate of 60%-80%. Limited by scattered ponds (406 ponds), insufficient catchment areas (<5 km2 per pond), and damaged main and lateral canals (integrity rate <40%), the overall reliability rates dropped below 40%, posing a high risk of yield reduction. (3) For every 10% increase in water supply reliability rate, late rice yield increased by 35-50 kg per mu(1mu≈666.67 m2), showing a significant positive linear correlation (R2=0.89). When the reliability rate exceeded 80%, soil water content remained stable at 18%-24% (optimal range for rice growth), resulting in yields of 400-500 kg per mu.When the reliability rate fell below 40%, soil water content dropped sharply below 10%, leading to plant wilting or even total crop failure (yield <200 kg per mu). Within the 60%-80% range of reliability rate, each 1 m3 irrigation water increase produced an extra 1.2-1.5 kg of rice, indicating optimal resource use efficiency. [Conclusion] By focusing on intra-seasonal rainfall during rice growth stages, this study reveals the underlying mechanism of irrigation water supply-demand imbalance in hilly irrigation areas and proposes the following three practical strategies. Over 70% irrigation water should be allocated during the booting to heading stages (September) based on crop water requirements, with priority given to areas maintaining water supply reliability rates above 60%. For areas with water supply reliability rates below 40%, the “pond desilting + intelligent water control” project should be implemented to increase small water source utilization rate from 45% to 75%, while restoring main and lateral canals to achieve an integrity rate above 60%. By focusing on intra-seasonal rainfall during rice growth stages, this study provides a scientific basis for precise irrigation management and confirmation of agricultural water use rights in hilly irrigation areas, holding important practical significance for optimizing water resource allocation and enhancing grain production capacity.
季内降雨量 / 田间净灌溉需水量 / 可供净灌溉用水量 / 供水保障 / 南方丘陵灌区
intra-seasonal rainfall / net irrigation water requirement / available net irrigation water / water supply reliability / hilly irrigation area of southern China
| [1] |
王奕童, 郭宗楼. 对南方大中型灌区灌溉用水量的几点认识与思考[J]. 中国农村水利水电, 2016(8):28-29.
(
|
| [2] |
梅新育. 确保、扩大有效灌溉面积对粮食安全的重要意义[J]. 人民论坛·学术前沿, 2022(8): 87-95.
(
|
| [3] |
邢贞相, 喻熠, 李凤昱, 等. 建三江主要作物需水量变化趋势与关键影响因子识别[J]. 农业机械学报, 2022, 53(7):308-315,346.
(
|
| [4] |
|
| [5] |
|
| [6] |
任修琳, 李宏亮, 张玉虎, 等. 2000—2015年三江平原主要作物需水量特征及影响因素分析[J]. 干旱区地理, 2019, 42(4): 854-866.
(
|
| [7] |
介飞龙, 费良军, 李山, 等. 基于根系层水分状态的旱区净灌溉需水量模型构建和应用[J]. 农业工程学报, 2022, 38(13): 105-113.
(
|
| [8] |
冯峰, 姜楠, 冯跃华, 等. 三义寨引黄灌区主要作物需水量计算及趋势分析[J]. 人民黄河, 2021, 43(9):165-170.
(
|
| [9] |
雷宏军, 乔姗姗, 潘红卫, 等. 贵州省农业净灌溉需水量与灌溉需求指数时空分布[J]. 农业工程学报, 2016, 32(12): 115-121.
(
|
| [10] |
乌仁娜. 大河沿子河灌区水资源供需平衡分析[J]. 陕西水利, 2024(2): 54-56.
(
|
| [11] |
赵惠新, 李兆宇. 关于提高灌溉设计保证率的必要性分析[J]. 中国农村水利水电, 2011(6): 52-54.
灌溉设计保证率是在经济分析基础上的一项重要技术指标,综合反映水源供水与灌溉用水两方面的影响,能够较好的表达灌溉工程的设计标准,对其选择是否具有合理性关系到国民经济与农业生产的可持续发展。针对我国各区域灌溉设计保证率的采用情况进行分析,指出规范中规定的设计值已不适应当今经济社会发展及农业生产需求,需要对其进行适当的调整。通过分析近些年旱灾成灾率的变化过程对粮食产量的影响、人均GDP的变化情况及供水总量对部门用水量的分配关系,表明我国在当前形势下提高灌溉设计保证率是必要的,也是可行的。
(
灌溉设计保证率是在经济分析基础上的一项重要技术指标,综合反映水源供水与灌溉用水两方面的影响,能够较好的表达灌溉工程的设计标准,对其选择是否具有合理性关系到国民经济与农业生产的可持续发展。针对我国各区域灌溉设计保证率的采用情况进行分析,指出规范中规定的设计值已不适应当今经济社会发展及农业生产需求,需要对其进行适当的调整。通过分析近些年旱灾成灾率的变化过程对粮食产量的影响、人均GDP的变化情况及供水总量对部门用水量的分配关系,表明我国在当前形势下提高灌溉设计保证率是必要的,也是可行的。
|
| [12] |
邹谷泉. 超过设计保证率枯水年份的灌溉用水计算[J]. 海河水利, 1985(6): 8-11.
(
|
| [13] |
郭元裕. 农田水利学[M]. 北京: 中国水利水电出版社, 1997.
(
|
| [14] |
索丽生, 刘宁. 水工设计手册:第9卷灌排供水[M]. 2版. 北京: 中国水利水电出版社,2014:44.
(
|
| [15] |
陈喜靖, 奚辉, 张如良, 等. 灌溉定额分月趋势确定法及其在旱作水稻上的应用[J]. 核农学报, 2016, 30(10): 2049-2055.
为了探索旱作水稻灌溉定额确定方法,通过对长系列(1992-2014年)单季稻生长季(6-10月份)及旱季(7-9月份)降雨量进行排频,并参考蒸发量确定不同灌溉保证率代表年;通过计算多年日均有效降雨量和水稻需水量,按月绘制成不同保证率的水稻需水量与有效降雨量变化趋势线图;通过积分法计算曲线方程差,即为月灌水额,合计后为灌溉定额,或通过测算曲线间的图形面积快速获得月灌水额。结果表明,当地单季水稻90%、75%和50%的年份能够满足的灌溉定额分别为416.9、338.7和216.1 mm,旱作水稻取其50%~60%的灌溉量值。应用试验表明,干旱年(2013年)按 90%、平水年(2014年)按50%的年份能够满足的定额减半灌溉,粳稻旱作产量分别为5 924.3 kg·hm<sup>-2</sup>和6 511.8 kg·hm<sup>-2</sup>,是淹灌栽培的84.1%和91.2%。该方法不仅能计算灌溉总量,还能体现灌溉量在作物生长过程中的分配趋势,对于提高旱作水稻的水分管理水平具有重要意义。
(
|
| [16] |
杨君, 唐兴隆, 袁淑君, 等. 湖南省多尺度生态系统服务供需关系及影响因素[J]. 水土保持通报, 2023, 43(6): 272-281.
(
|
| [17] |
中国主要农作物需水量等值线图协作组. 中国主要农作物需水量等值线图研究[M]. 北京: 中国农业科学技术出版社, 1993: 15-17.
(Cooperative Group of the Book. Study on Isogram of Water Requirement of Main Crops in China[M]. Beijing: China Agricultural Science and Technology Press, 1993: 15-17.) (in Chinese)
|
| [18] |
茆智. 水稻节水灌溉及其对环境的影响[J]. 中国工程科学, 2002, 4(7): 8-16.
(
|
| [19] |
周欢, 原保忠, 柯传勇, 等. 灌溉水量对水稻生长和产量的影响[J]. 灌溉排水学报, 2010, 29(2): 99-101.
(
|
/
| 〈 |
|
〉 |