电势梯度对软土电渗固结效果及能耗的影响分析

黄文聪, 李广, 罗沈, 韦未, 南春子, 张伟锋

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (4) : 134-141.

PDF(7430 KB)
PDF(7430 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (4) : 134-141. DOI: 10.11988/ckyyb.20240023
岩土工程

电势梯度对软土电渗固结效果及能耗的影响分析

作者信息 +

Impact of Potential Gradient on Soft Soil Electro-osmotic Consolidation Effect and Energy Consumption

Author information +
文章历史 +

摘要

为优化电渗方法,研究不同电势梯度下软土固结效果并综合分析能量消耗,设置V1—V6共6组电势梯度(1.00、1.25、1.50、1.75、2.00、2.25 V/cm),通过对比电渗中的排水比、接触电阻与平均能耗系数,以及电渗后的含水率、承载力、抗剪强度,综合分析电渗加固软土的最佳电势梯度。结果表明:除V1和V2外,其余4组电渗后土体的排水比和最终含水率均差别不大;但是在通电后期,V1、V3、V6的接触电阻分别增长15.76、25.65、35.39倍,平均能耗系数分别增长5.07、6.12、10.98倍;各组土体强度均随电势梯度的增加而提高,其中V1—V6的土体平均承载力特征值提高了2.79~4.89倍,平均抗剪强度在5.7~12.2 kPa区间,主要原因是高电势梯度下土体能够快速固结。因此,若不考虑能耗,最佳电势梯度为2.00~2.25 V/cm;若考虑节约能源,最佳电势梯度为1.50~2.00 V/cm。

Abstract

To optimize the electroosmotic method, we investigated the consolidation effect of soft soil under various potential gradients and conducted a comprehensive analysis of energy consumption. Six groups of potential gradients (1.00, 1.25, 1.50, 1.75, 2.00, 2.25 V/cm), denoted as V1 to V6, were set up. We comprehensively analyzed the optimal potential gradient for electroosmotic reinforcement of soft soil by comparing the drainage ratio, contact resistance, and average energy-consumption coefficient during electroosmosis, along with the water content, bearing capacity, and shear strength after electroosmosis. The results indicate that, except for V1 and V2, there were negligible differences in the drainage ratio and final water content of the soil after electroosmosis. However, in the later stage of power-on, the contact resistances of V1, V3, and V6 increased by 15.76, 25.65, and 35.39 times respectively, and the average energy-consumption coefficients increased by 5.07, 6.12, and 10.98 times respectively. The soil strength of all groups increased with the rise of the potential gradient. Specifically, the average bearing capacity of the V1-V6 soils increased by 2.79-4.89 times, and the average shear strength increased by 5.7-12.2 kPa. This is mainly because the soil can consolidate rapidly under a high potential gradient. Therefore, without considering energy consumption, the optimal potential gradient ranges from 2.00 to 2.25 V/cm. However, when energy-saving is taken into account, the optimal potential gradient lies between 1.50 and 2.00 V/cm.

关键词

软土 / 电渗固结 / 电势梯度 / 排水比 / 能耗系数 / 土体强度

Key words

soft soil / electro-osmotic consolidation / potential gradient / drainage ratio / energy consumption coefficient / soil strength

引用本文

导出引用
黄文聪, 李广, 罗沈, . 电势梯度对软土电渗固结效果及能耗的影响分析[J]. 长江科学院院报. 2025, 42(4): 134-141 https://doi.org/10.11988/ckyyb.20240023
HUANG Wen-cong, LI Guang, LUO Shen, et al. Impact of Potential Gradient on Soft Soil Electro-osmotic Consolidation Effect and Energy Consumption[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 134-141 https://doi.org/10.11988/ckyyb.20240023
中图分类号: TU411 (实验室试验(室内土工试验))   

参考文献

[1]
张玉成, 杨光华, 胡海英, 等. 珠三角深厚软土地区浅基坑支护若干问题探讨[J]. 岩土工程学报, 2014, 36(增刊1): 1-11.
(ZHANG Yu-cheng, YANG Guang-hua, HU Hai-ying, et al. Some Problems about Retaining Structures for Shallow Pits in Deep and Soft Soil Areas of Pearl River Delta[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Supp. 1): 1-11.) (in Chinese)
[2]
宋许根, 王志勇, 柏威伟, 等. 珠海西部中心城区大面积深厚软土工程特性研究[J]. 岩石力学与工程学报, 2019, 38(7): 1434-1451.
(SONG Xu-gen, WANG Zhi-yong, BAI Wei-wei, et al. Study on Engineering Characteristics of Large-scale Deep Soft Soil in the Central Area of Western Zhuhai[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1434-1451.) (in Chinese)
[3]
ZHENG G, LIU J, LEI H, et al. Improvement of very Soft Ground by a High-efficiency Vacuum Preloading Method: A Case Study[J]. Marine Georesources & Geotechnology, 2017, 35(5): 631-642.
[4]
叶华洋, 张伟锋, 韦未, 等. 激发剂-地聚合物对软土固化试验研究[J]. 应用基础与工程科学学报, 2019, 27(4): 906-917.
(YE Hua-yang, ZHANG Wei-feng, WEI Wei, et al. Experimental Study on the Curing of Soft Soil with Activator-geopolymer[J]. Journal of Basic Science and Engineering, 2019, 27(4): 906-917.) (in Chinese)
[5]
林天干, 何华, 许东风, 等. 地聚合物加固软土力学性能及微观试验研究[J]. 长江科学院院报, 2018, 35(10): 104-108.
摘要
为了探讨不同聚土比(地聚合物质量与软土湿土质量之比)和不同龄期下地聚合物加固软土强度的变化规律,设计了10%,12%,14% 3种聚土比,按照7,28,60 d 3个龄期进行直接剪切试验和无侧限抗压强度试验,发现:其强度随着聚土比的增加而提高,同一聚土比下随着龄期延长而提高;当聚土比为14%时,地聚合物处理软土的效果比较好。同时通过SEM扫描和CT扫描试验分析了软土加固后的微观结构特征,并在此基础上对微观结构与宏观性能之间的关系进行了分析。宏观与微观关系是强度越高,结构空隙越少。研究成果为地聚合物加固软土在实际工程中的应用提供了科学依据。
(LIN Tian-gan, HE Hua, XU Dong-feng, et al. Mechanical Properties and Microscopic Test of Wenzhou Soft Soil Reinforced by Geopolymer[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10): 104-108.) (in Chinese)
Direct shear test and unconfined compression test are conducted on geopolymer-reinforced soft soil specimens of different curing ages (7 d, 28 d, and 60 d). Ratio of geopolymer mass to soft and wet soil mass (hereinafter referred to as “the ratio”)is designed at three levels: 10%, 12%, and 14%. Results demonstrate that the strength of reinforced soil climbs with the increase of geopolymer dosage; while at a given geopolymer dosage, the strength of reinforced soil also increases with the elongation of curing age. The reinforcement effect is good when the ratio is 14%. Furthermore, the relation between microstructure and macro-properties of reinforced soil is analyzed based on SEM scanning and CT scanning. Results indicate that smaller structural porosity would result in higher strength. The results offer scientific basis for the application of geopolymer-reinforced soft soil inpractical engineering.
[6]
LI X, LI J, ZHOU Y, et al. Rapid Treatment Using Vacuum-surcharge Preloading with Dynamic Consolidation Method: Laboratory Model Test[J]. KSCE Journal of Civil Engineering, 2023, 27(3): 1010-1020.
[7]
ZHANG D, FU H, WANG J, et al. Behaviour of Thick Marine Deposits Subjected to Vacuum Combined with Surcharge Preloading[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1147-1156.
[8]
施卫东, 潘江岩, 李永强. 真空-堆载联合预压加固软土地基测试与研究[J]. 长江科学院院报, 2003, 20(5): 38-41.
(SHI Wei-dong, PAN Jiang-yan, LI Yong-qiang. Test and Study on Reinforcement of Soft Clay Foundation with Vacuum-heaped Load Combined Precompression[J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(5): 38-41.) (in Chinese)
[9]
YU J L, ZHOU J J, GONG X N, et al. Centrifuge Study on Behavior of Rigid Pile Composite Foundation under Embankment in Soft Soil[J]. Acta Geotechnica, 2021, 16(6): 1909-1921.
[10]
陈盛原, 叶华洋, 张伟锋, 等. 路堤荷载作用下柔性桩复合地基的沉降分析[J]. 岩土力学, 2020, 41(9): 3077-3086.
(CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, et al. Settlement Analysis of Flexible Pile Composite Foundation under Embankment Load[J]. Rock and Soil Mechanics, 2020, 41(9): 3077-3086.) (in Chinese)
[11]
郑刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146.
(ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State-of-the-art Techniques for Ground Improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146.) (in Chinese)
[12]
庄艳峰. 电渗排水固结的设计理论和方法[J]. 岩土工程学报, 2016, 38(增刊1): 152-155.
(ZHUANG Yan-feng. Theory and Design Method for Electro-osmotic Consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Supp.1): 152-155.) (in Chinese)
[13]
郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
(ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, et al. Test and Application Research Advance on Foundation Reinforcement by Electro-osmosis Method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1064-1073.) (in Chinese)
[14]
于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、 碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434.
(YU Gui-rui, HAO Tian-xiang, ZHU Jian-xing. Discussion on Action Strategies of China’s Carbon Peak and Carbon Neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423-434.) (in Chinese)
[15]
ZHOU J, TAO Y L, XU C J, et al. Electro-osmotic Strengthening of Silts Based on Selected Electrode Materials[J]. Soils and Foundations, 2015, 55(5): 1171-1180.
[16]
杨克军, 袁国辉, 符洪涛, 等. 通电方式对电渗加固软土影响试验研究[J]. 水利水电技术, 2020, 51(2): 170-176.
(YANG Ke-jun, YUAN Guo-hui, FU Hong-tao, et al. Experimental Study on Influence of Electrification Method on Soft Soil Enhanced by Electroosmosis[J]. Water Resources and Hydropower Engineering, 2020, 51(2): 170-176.) (in Chinese)
[17]
TAO Y, ZHOU J, GONG X, et al. Electro-osmotic Dehydration of Hangzhou Sludge with Selected Electrode Arrangements[J]. Drying Technology, 2016, 34(1): 66-75.
[18]
李瑛, 龚晓南. 等电势梯度下电极间距对电渗影响的试验研究[J]. 岩土力学, 2012, 33(1): 89-95.
(LI Ying, GONG Xiao-nan. Experimental Research on Effect of Electrode Spacing on Electro-osmotic Dewatering under Same Voltage Gradient[J]. Rock and Soil Mechanics, 2012, 33(1): 89-95.) (in Chinese)
[19]
XIANG P, CUI Y, WEI G. Study on the Effect of Low-temperature Anode Filled with FeCl3 Solution on Electro-osmotic Reinforcement of Soft Clay[J]. Applied Sciences, 2022, 12(5): 2517.
[20]
赵洪星. 电渗联合化学溶液加固淤泥质软土试验研究[J]. 长江科学院院报, 2022, 39(5):99-105.
摘要
采用自制室内试验装置,研究电渗联合化学溶液对淤泥质软土的排水固结效果。通过对比分析电流值、电渗排水量、抗剪强度和微观结构等方面的差异,进一步揭示了不同化学溶液对电渗固结效果的影响机理。试验结果表明:化学溶液的加入可以促进电渗排水,而小原子量、低价态离子的促进效果更为显著,在本次试验中Na<sup>+</sup>&gt;Ca<sup>2+</sup>&gt;Al<sup>3+</sup>;运动到阴极附近的Ca<sup>2+</sup>、Al<sup>3+</sup>离子可以参与反应生成胶结物质,增强了土颗粒间的黏结力,提高了阴极土体的抗剪强度,其中以Ca<sup>2+</sup>离子增强效果最明显,土体抗剪强度提高了3.5倍;而化学溶液的加入则会加速电极腐蚀和土体的酸碱化。
(ZHAO Hong-xing. Mechanism of Using Electroosmosis and Different Chemical Solutions to Reinforce Mucky Clay[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 99-105.) (in Chinese)
A one-dimensional laboratory test program is performed to investigate the strengthening effect of electroosmosis incorporated anolyte on mucky clay. By comparing the differences in electroosmotic current, drainage, shear strength and microstructure of soil, the mechanism of various anolyte accelerating the electroosmotic dewatering is further revealed. The testing results show that the injection of chemical solution facilitates the electrochemical drainage. Cations with lower atomic weight and valence have more significant effect: Na<sup>+</sup>&gt;Ca<sup>2+</sup>&gt;Al<sup>3+</sup>. The Ca<sup>2+</sup> and Al<sup>3+</sup> cations migrated to cathodic region react with hydroxyl ion to produce cementing agent, which enhances the cohesion between soil particles and improves soil's shear strength. Ca<sup>2+</sup> has the strongest improvement effect by enhancing the shear strength of the cathodic soil by as much as 350%. Moreover, the injection of chemical solutions will also accelerate electrode corrosion and induce larger variation of pH value.
[21]
孙慧, 李从安, 邱金伟. 电动土工塑料排水板修复重金属污染高岭土试验研究[J]. 长江科学院院报, 2024, 41(2):123-137,134.
(SUN Hui, Experimental Study on Remediation of Heavy Metal Contaminated Kaolin by Electrokinetic Geosynthetics Drainage Board[J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(2):123-137,134.) (in Chinese)
[22]
ESRIG M I. Pore Pressures, Consolidation, and Electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 899-921.
[23]
MAHALLEH H A M, SIAVOSHNIA M, YAZDI M. Effects of Electro-osmosis on the Properties of High Plasticity Clay Soil: Chemical and Geotechnical Investigations[J]. Journal of Electroanalytical Chemistry, 2021, 880: 114890.
[24]
JAYASEKERA S. Electrokinetics to Modify Strength Characteristics of Soft Clayey Soils: A Laboratory Based Investigation[J]. Electrochimica Acta, 2015, 181: 39-47.
[25]
MALEKZADEH M, LOVISA J, SIVAKUGAN N. An Overview of Electrokinetic Consolidation of Soils[J]. Geotechnical and Geological Engineering, 2016, 34(3): 759-776.
[26]
IVLIEV E A. Electro-osmotic Drainage and Stabilization of Soils[J]. Soil Mechanics and Foundation Engineering, 2008, 45(6): 211-218.
[27]
SHEN Y, FENG J, SHI W, et al. Effects of Voltage Gradients on Electro-osmotic Characteristics of Taizhou Soft Clay[J]. International Journal of Electrochemical Science, 2019, 14(3): 2136-2159.
[28]
谢新宇, 郑凌逶, 谢康和, 等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报, 2019, 52(1): 108-114, 121.
(XIE Xin-yu, ZHENG Ling-wei, XIE Kang-he, et al. Experimental Study on Electro-osmosis of Marine Soft Soil with Varying Potential Gradient and Electrode Spacing[J]. China Civil Engineering Journal, 2019, 52(1): 108-114, 121.) (in Chinese)
[29]
焦丹, 龚晓南, 李瑛. 电渗法加固软土地基试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1):3208-3216.
(JIAO Dan, Experimental Study of Consolidation of Soft Clay Using Electro-osmosis Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(Supp. 1):3208-3216.) (in Chinese)
[30]
张雷, 金海晖, 潘卓杰, 等. 不同电势梯度下新型复合电极的电渗固结试验[J]. 江苏科技大学学报(自然科学版), 2022, 36(3): 114-118.
(ZHANG Lei, JIN Hai-hui, PAN Zhuo-jie, et al. Experimental Research of Composite Electrode on Electro-osmotic Consolidation under Different Voltage Gradient[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(3): 114-118.) (in Chinese)
[31]
刘飞禹, 宓炜, 王军, 等. 逐级加载电压对电渗加固吹填土的影响[J]. 岩石力学与工程学报, 2014, 33(12): 2582-2591.
(LIU Fei-yu, MI Wei, WANG Jun, et al. Influence of Applying Stepped Voltage in Electroosmotic Reinforcement of Dredger Fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2582-2591.) (in Chinese)
[32]
王梁志, 齐昌广, 郑金辉, 等. 电渗复合地基模型试验研究[J]. 岩石力学与工程学报, 2020, 39(12):2557-2569.
(WANG Liang-zhi, QI Chang-guang, ZHENG Jin-hui, et al. Model Test Study on Electroosmotic Composite Foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2557-2569.) (in Chinese)
[33]
TORABI M S, ASADOLLAHFARDI G, REZAEE M, et al. Electrokinetic Removal of Cd and Cu from Mine Tailing: EDTA Enhancement and Voltage Intensity Effects[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25(2):05020007.
[34]
陶燕丽, 周建, 龚晓南, 等. 铁和铜电极对电渗效果影响的对比试验研究[J]. 岩土工程学报, 2013, 35(2):388-394.
(TAO Yan-li, ZHOU Jian, GONG Xiao-nan, et al. Comparative Experiment on Influence of Ferrum and Cuprum Electrodes on Electroosmotic Effects[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 388-394.) (in Chinese)
[35]
陈卓, 周建, 温晓贵, 等. 电极反转对电渗加固效果的试验研究[J]. 浙江大学学报(工学版), 2013, 47(9): 1579-1584.
(CHEN Zhuo, ZHOU Jian, WEN Xiao-gui, et al. Experimental Research on Effect of Polarity Reversal to Electro-osmotic[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(9): 1579-1584.) (in Chinese)
[36]
李一雯, 周建, 龚晓南, 等. 电极布置形式对电渗效果影响的试验研究[J]. 岩土力学, 2013, 34(7): 1972-1978.
(LI Yi-wen, ZHOU Jian, GONG Xiao-nan, et al. Experimental Research on Influence of Electrode Array on Electroosmotic Effect[J]. Rock and Soil Mechanics, 2013, 34(7): 1972-1978.) (in Chinese)

基金

南方电网公司科技项目(GDKJXM20230271)
南方电网公司科技项目(GDKJXM20230273)
华南农业大学大学生创新训练项目(2023105641125)
华南农业大学大学生创新训练项目(2023105641178)

责任编辑: 黄玲
PDF(7430 KB)

Accesses

Citation

Detail

段落导航
相关文章

/