PDF(5902 KB)
基于LSTM的三峡-葛洲坝梯级电站超短期水位预测
汪涛, 徐杨, 曹辉, 刘亚新, 马皓宇, 张政, 谢帅, 常新雨
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (4) : 80-86.
PDF(5902 KB)
PDF(5902 KB)
基于LSTM的三峡-葛洲坝梯级电站超短期水位预测
LSTM-based Prediction of Short-term Water Level for Three Gorges and Gezhouba Cascade Powerplants
三峡-葛洲坝梯级电站的水位预测关系到电站安全稳定运行和综合效益发挥,然而在动静库容计算体系转换关系复杂、电站下游非恒定流等多种因素的综合影响下,传统方法在短期水位预测过程时难以跟踪,在电站承担调峰、调频任务及复杂工况下有突破调度规程及开闸的风险,从而引发工程安全风险和经济损失。采用长短时记忆网络(LSTM)深度学习方法,建立了三峡-葛洲坝梯级电站超短期水位预测模型,利用水位、入库流量、出力数据预测电站超短期的水位过程,并通过大调峰工况数据对模型预测精度进行应用分析。研究结果表明该模型总体精度较高、稳定性和适应性较好,在不同调峰工况下预测精度稳定,但在水位极值处预测结果往往会出现均化现象。三峡、葛洲坝上游水位24 h预测平均误差均<0.05 m。研究成果可为梯级电站精细化调度提供技术支撑。
Water level prediction for the Three Gorges-Gezhouba cascade hydropower stations is crucial for their safe and stable operation and overall benefits. Nevertheless, due to the combined effects of multiple factors, such as the complex transformation between dynamic and static storage-capacity calculations and the unsteady flow downstream of the stations, traditional methods struggle to accurately predict short-term water levels. When the stations perform peak-shaving and frequency-regulation tasks under complex operating conditions, there is a risk of violating scheduling regulations and opening the gates, which may lead to engineering safety hazards and economic losses. In this study, we employed the Long Short-Term Memory (LSTM) deep-learning method to develop an ultra-short-term water-level prediction model for the Three Gorges-Gezhouba Hydropower Stations. We utilized water-level, inflow, and output data to forecast the ultra-short-term water-level processes of the stations. Subsequently, we analyzed the prediction accuracy of the model using data from peak-shaving scenarios. The results show that the model exhibits high overall accuracy, stability, and adaptability, and maintains stable prediction accuracy under different peak-shaving conditions. However, the prediction results tend to be homogenized at extreme water levels. The average error of 24-hour water-level prediction for the upstream of the Three Gorges and Gezhouba is less than 0.05 m. These findings can offer technical support for the refined scheduling of cascade hydropower stations.
水位预测 / 梯级电站 / LSTM / 三峡电站 / 葛洲坝电站 / 误差分析
water level prediction / cascade powerplant / LSTM / Three Gorges powerplant / Gezhouba powerplant / error analysis
| [1] |
徐杨, 樊启祥, 尚毅梓, 等. 非弃水期葛洲坝水电站下游水位变化过程预测新方法[J]. 水利水电科技进展, 2019, 39(3): 50-55.
(
|
| [2] |
徐杨, 刘亚新, 汪涛, 等. 基于LSTM的三峡水库短期上游水位预测方法研究[J]. 水利水电快报, 2022, 43(10): 13-18.
(
|
| [3] |
刘亚新, 樊启祥, 尚毅梓, 等. 基于LSTM神经网络的水电站短期水位预测方法[J]. 水利水电科技进展, 2019, 39(2): 56-60, 78.
(
|
| [4] |
刘亚新, 姚华明, 徐杨, 等. 白鹤滩蓄水对金沙江下游梯级水库消落期调度影响分析[J]. 水电能源科学, 2021, 39(12): 84-88.
(
|
| [5] |
李力. 复杂水力联系下梯级水库短期联合优化调度研究[D]. 武汉: 华中科技大学, 2021.
(
|
| [6] |
刘亚新, 徐杨. 基于机器学习的葛洲坝水电站日均出力预测[J]. 人民长江, 2022, 53(4):201-209,220.
(
|
| [7] |
刘晓阳, 郭乐. 基于机器学习方法的葛洲坝水电站下游水位预测研究[J]. 水利水电快报, 2022, 43(10):19-22,36.
(
|
| [8] |
胡昊, 马鑫, 徐杨, 等. 基于权重修正和DRSN-LSTM模型的向家坝下游水位多时间尺度预测[J]. 水利水电技术(中英文), 2022, 53(7):46-57.
(
|
| [9] |
舒远丽. 基于深度学习的三峡水库实时调度模型研究[D]. 宜昌: 三峡大学, 2021.
(
|
| [10] |
刘晓锋, 李太斌, 范伟宁, 等. 基于深度学习的水电站水流量和发电量区间预测[J]. 电子技术与软件工程, 2020(9): 221-222.
(
|
| [11] |
汪涛, 徐杨, 刘亚新, 等. 基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度[J]. 长江科学院院报, 2023, 40(12): 30-36, 58.
金沙江下游—三峡已形成六库联合调度格局,调度维数增多,约束庞杂交织,优化目标多样,给调度方案制定带来极大困难。针对传统粒子群算法求解调度模型寻优能力不足的难题,提出多种群引力粒子群算法,建立优化调度模型并应用改进算法求解。算法测试和应用结果表明,多种群引力粒子群算法寻优性能更加先进,更适用于求解梯级水库优化调度问题。实例表明,上游龙头电站通过减少自身发电量可以使下游电站和梯级发电量增加。
(
From the lower reaches of the Jinsha River to the Three Gorges, a complex joint scheduling pattern comprising six reservoirs has emerged. This pattern is characterized by an expanded scope of scheduling, numerous and diverse constraints, and a range of optimization objectives. Consequently, formulating appropriate scheduling schemes has become particularly challenging. Recognizing the limitations of traditional particle swarm algorithms in addressing this scheduling model, we propose a multi-group gravitational particle swarm algorithm to enhance the optimization capabilities of the scheduling model. To this end, a multi-scale and multi-objective nested scheduling model is established, and the improved algorithm is applied to solve it. The test and application results demonstrate that the multi-group gravitational particle swarm algorithm exhibits superior optimization performance compared to other approaches. Moreover, it is more suitable for achieving optimal operation of cascade reservoirs. A case study further illustrates that the upstream leading power station can enhance the generation of downstream power stations and cascade stations by reducing its own power generation capacity.
|
/
| 〈 |
|
〉 |