复杂应力条件下粗粒料的剪胀性研究进展

周跃峰, 左永振, 万航

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 104-112.

PDF(962 KB)
PDF(962 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 104-112. DOI: 10.11988/ckyyb.20231062
岩土工程

复杂应力条件下粗粒料的剪胀性研究进展

作者信息 +

Research Progresses in Dilatancy of Coarse Granular Materials under Complex Stress Conditions

Author information +
文章历史 +

摘要

粗粒料的剪胀性是其强度和变形研究的重要问题之一,它取决于颗粒排列、粒间压力等细微观作用;在宏观层面,受相对密度与应力状态的影响。围绕复杂应力条件下粗粒料的剪胀问题,从粗粒料力学特性的试验研究、粗粒料的剪胀性强度准则以及临界状态与剪胀性方面,对国内外的研究进展进行了系统论述。在此基础上,提出该领域呈现如下发展态势:①通过大型真三轴试验开展粗粒料剪胀率的试验研究与理论分析,能够促进粗粒料本构理论的发展进步;②结合应力路径试验中的应力变形规律研究,可实现从常规三轴条件下向复杂应力条件下的剪胀方程的进一步发展,从而体现强度与变形问题的统一;③采用状态参量去评价土体的松密状态与剪胀性,能够耦合应力状态与孔隙比,尽量避免“一种材料,多组参数”。研究结果表明状态参量和应力路径相结合的方法,使得粗粒料的力学特性研究更加具有科学性和系统性。

Abstract

Dilatancy is an important mechanical issue in the study on strength and deformation of coarse granular materials. It is governed by microscopic factors such as particle arrangement and inter-particle pressure, and hence is affected by macroscopic variables including relative density and stress state. In this article, research progresses in the dilatancy of coarse granular materials under complex stress conditions are reviewed from the aspects of mechanical properties, strength criteria, critical state, and dilatancy behavior. Future trends in research are outlined as follows: 1) Laboratory investigation via large-scale true triaxial tests and theoretical analysis on the dilatancy of coarse granular material would drive advancements in constitutive modeling. 2) Study on the stress-deformation facilitates the dilatancy equations under conventional triaxial condition developing into that under complex stress condition, thereby unifying strength and deformation issues. 3) Coupling stress state and void ratio with state parameters offers a systematic approach to assessing the compactness state of soils and their dilatancy behavior, potentially reducing the reliance on multiple material parameters. The integration of state parameters and stress paths indicates a more scientific and systematic approach in the research on the mechanical properties of coarse granular materials.

关键词

粗粒料 / 剪胀性 / 真三轴试验 / 强度准则 / 状态参量

Key words

coarse granular material / dilatancy / true triaxial test / strength criterion / state parameter

引用本文

导出引用
周跃峰, 左永振, 万航. 复杂应力条件下粗粒料的剪胀性研究进展[J]. 长江科学院院报. 2024, 41(8): 104-112 https://doi.org/10.11988/ckyyb.20231062
ZHOU Yue-feng, ZUO Yong-zhen, WAN Hang. Research Progresses in Dilatancy of Coarse Granular Materials under Complex Stress Conditions[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 104-112 https://doi.org/10.11988/ckyyb.20231062
中图分类号: TU454 (变形测量)   

参考文献

[1]
汪丁建, 唐辉明, 张雅慧, 等. 粗粒土试验与力学特性研究现状[J]. 冰川冻土, 2016, 38(4): 943-954.
摘要
粗粒土既是一种天然地质体,又能用作建筑材料,在自然界中广泛存在,其力学性质研究对实际工程实践至关重要.在大量关于粗粒土试验与力学性质研究文献的基础上做了以下分析和总结:将粗粒土试验分为三类,包括室内试验、原位试验和数值试验,分别对每种试验的试验原理、仪器、方法和适用范围进行了详细介绍;根据粗粒土力学性质研究现状,重点对粗粒土的剪胀性、颗粒破碎性和软化性这三种特性从形成机制、影响因素和描述方法上进行了深入总结.在此基础上,指出粗粒土力学性质研究方面存在如下不足:现有方法和理论存在一定局限性、宏观特性发生机理假设缺乏客观验证、宏观特性难以用细观力学演绎、多相耦合下的力学性质鲜有研究.最后,从试验、理论和数值仿真试验角度提出关于粗粒土力学性质研究的展望.
(WANG Ding-jian, TANG Hui-ming, ZHANG Ya-hui, et al. Research Progress on Mechanical Tests and Properties of Coarse-grained Soil[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 943-954. (in Chinese))
Coarse-grained soil, as both geological mass and construction material, is extensively spread in nature. The mechanical properties of coarse-grained soil are of great importance to practical engineering in consequence. In review of related literatures, it was analyzed and summarized on tests and mechanical properties of coarse grained soils as follows: the tests fall into three types including laboratory, in-situ and numerical tests, respectively introduced about the testing principles, apparatus, operations, and applicability; especially, dilatancy, granular breakability and softening behaviors of coarse-grained soil are respectively summarized, from forming mechanism, influences and description methods perspectives. The overview above indicates four insufficiencies of research on coarse-grained soil mechanical properties: existing methods and theories have certain limitations; assumptions on genetic mechanisms of macro properties remain to be verified; it's difficult to deduce macro performances from mesomechanics perspective; multiphase coupling mechanical properties are seldom involved. Finally, the research prospects in mechanical properties of coarse-grained soil were put forward from the views of tests, theories and numerical simulations.
[2]
BOLTON M D. The Strength and Dilatancy of Sands[J]. Géotechnique, 1986, 36(1): 65-78.
[3]
LADE P V, DUNCAN J M. Elastoplastic Stress-strain Theory for Cohesionless Soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10):1037-1053.
[4]
MATSUOKA H, NAKAI T. Stress-deformation and Strength Characteristics of Soil under Three Different Principal Stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974, 1974(232): 59-70.
[5]
李广信. 高等土力学[M].2版. 北京: 清华大学出版社, 2016.
(LI Guang-xin. Advanced Soil Mechanics[M].Edition 2. Beijing: Tsinghua University Press, 2016. (in Chinese))
[6]
姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑:工程科学材料科学, 2004, 34(11):1283-1299.
(YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. Generalized Nonlinear Strength Theory and Its Transformation Stress Space[J]. Science in China, Series E, 2004, 34(11): 1283-1299. (in Chinese))
[7]
杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397.
摘要
将材料的破坏归结为剪切破坏,每种材料对应于特定的剪切滑动面,抗剪强度为滑动面上正应力的函数,基于不同材料的强度特性将一系列的剪切滑动面统一起来,建立了岩土材料的非线性统一强度模型.非线性统一强度模型的滑动面为β应力空间内的等倾面,在β应力空间内的强度面为圆锥面;在普通应力空间内的强度面为一系列连续光滑、外凸的锥面,在偏平面上强度曲线涵盖了从下限Matsuoka-Nakai曲线到上限Drucker-Prager圆之间的所有区域,子午面上强度线为直线.非线性统一强度模型只有3个材料参数,参数都具有明确的物理意义,通过与国内外学者已取得的岩土类材料真三轴强度试验结果的比较,表明模型可适用于多种类型的材料,并合理描述其非线性强度特性.
(DU Xiu-li, MA Chao, LU De-chun. Nonlinear Unified Strength Model of Geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. (in Chinese))
<p>The failure of material can be concluded to the shear fracture and each material has a specific shear sliding surface. The shear strength is the function of normal stress on sliding surface. A series of shear sliding surface is unified and nonlinear unified strength model of geo-materials is proposed. Sliding surface of nonlinear unified strength model is isoclinic surface in <em>&beta;</em> stress space. The Strength surface of nonlinear unified strength model is circular conical surface in the <em>&beta;</em> stress space and a series of conical surfaces are continuous smooth and convex in principal stress space. The nonlinear unified strength model can be illustrated as a curve between the Drucker-Prager and SMP in deviatoric plane, and as a straight line in meridian plane. There are only three mechanical parameters in the model which have definite physical meanings. Compared with large numbers of data under true triaxial tests, the applicability of nonlinear unified strength model is verified to different materials. And the proposed model can describe the nonlinear strength property of various materials reasonably.</p>
[8]
俞茂宏, 彭一江. 强度理论百年总结[J]. 力学进展, 2004, 34(4): 529-560.
(YU Mao-hong, PENG Yi-jiang. Advances in Strength Theories for Materials under Complex Stress State in the 20TH Century[J]. Advances In Mechanics, 2004, 34(4): 529-560. (in Chinese))
[9]
高莲士, 赵红庆, 张丙印. 堆石料复杂应力路径试验及非线性K-G模型研究[C]// 国际高土石坝学术会议论文集. 北京: 中国水力发电工程学会, 1993:110-117.
(GAO Lian-shi, ZHAO Hong-qing, ZHANG Bing-yin. Research on Complex Stress Path Test and Nonlinear K-G Model of Rockfill[C]// Proceedings of the International Conference of High Earth Rock Dam. Beijing: China Society of Hydropower Engineering, 1993:110-117. (in Chinese))
[10]
谢婉丽. 大坝应力路径条件下粗粒料的强度和变形特性的研究[D]. 昆明: 昆明理工大学, 2002.
(XIE Wan-li. Strength and Deformation Characteristics of Coarse-grained Materials under Dam Stress Path[D]. Kunming: Kunming University of Science and Technology, 2002. (in Chinese))
[11]
秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10):1575-1580.
(QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on Strength and Deformation Behavior of Coarse Aggregates Based on Large-scale Triaxial Tests[J]. Rock and Soil Mechanics, 2004, 25(10):1575-1580. (in Chinese))
[12]
INDRAWAN I G B, RAHARDJO H, LEONG E C. Effects of Coarse-grained Materials on Properties of Residual Soil[J]. Engineering Geology, 2006, 82(3): 154-164.
[13]
张嘎, 张建民. 粗颗粒土的应力应变特性及其数学描述研究[J]. 岩土力学, 2004, 25(10): 1587-1591.
(ZHANG Ga, ZHANG Jian-min. Study on Behavior of Coarse Grained Soil and Its Modeling[J]. Rock and Soil Mechanics, 2004, 25(10): 1587-1591. (in Chinese))
[14]
程展林, 潘家军. 土石坝工程领域的若干创新与发展[J]. 长江科学院院报, 2021, 38(5):1-10,16.
摘要
我国高土石坝数量居世界之首,保证高坝大库建设与长期运行安全是国家经济和公共安全保障的重大需求。系统总结了长江科学院近年来在土石坝工程领域的若干创新与发展。提出了基于“旁压模量当量密度法”的粗粒料级配相似理论试验方法;介绍了研发的系列CT三轴仪,实现了粗粒料组构要素的定量测量;提出了三轴试验中加载板与试样之间由滑动摩擦变为滚动摩擦、整体式接触变为分散式接触的减摩新方法,研发了相关减摩装置;研制了大尺寸、高压力、微摩擦、刚柔复合加载的土工真三轴仪;揭示了粗粒料真实三维应力条件下的强度与变形变化规律、湿化与蠕变变形特性;构建了粗粒料三参量非线性K-K-G剪胀模型、六参数湿化模型、九参数蠕变数学模型及相应的参数确定方法;基于当量密度法的原创思想,提出了利用旁压试验间接确定超百米级深厚覆盖层现场密度的试验方法。上述研究成果可为高土石坝工程建设提供重要科技支撑。
(CHENG Zhan-lin, PAN Jia-jun. Some Innovations and Developments in the Field of Earth-rock Dam Engineering[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5):1-10,16. (in Chinese))
China ranks top in the world in the amount of high earth-rock dam. To ensure the construction and long-term operation safety of high earth and rockfill dams is a major demand posed by national economic and public security. We summarize the major research progresses in the field of earth-rock dam engineering made by the Yangtze River Scientific Research Institute in recent years. Such progresses include: the test method of gradation similarity theory of coarse-grained material based on equalling density with pressuremeter modulus, the series CT triaxial apparatus for quantitatively measuring fabric of coarse-grained material, a novel friction reduction method in which the contact between soil and loading plate is changed from holistic contact to distributed contact and sliding friction to rolling friction, as well as its corresponding friction reduction devices. Moreover, true triaxial apparatus with large scale, high pressure, micro-friction and rigid-flexible composite loading has been developed. The variation law of strength and deformation and the wetting and creep deformation mechanism of coarse-grained materials under real three-dimensional stress have been revealed. The <i>K-K-G</i> nonlinear dilatancy model with three parameters, the wetting model with six parameters, the creep model with nine parameters and the corresponding parameter determination method have been established. In addition, in line with the original idea of equivalent density method, a test method for indirectly determining the field density of deep overburden with over 100 meters by pressuremeter test has been proposed. The above research findings offer crucial scientific and technological supports for the construction of high earth-rock dams.
[15]
ALONSO E E, ROMERO E E, ORTEGA E. Yielding of Rockfill in Relative Humidity-controlled Triaxial Experiments[J]. Acta Geotechnica, 2016, 11(3): 455-477.
[16]
INDRARATNA B, IONESCU D, CHRISTIE H D. Shear Behavior of Railway Ballast Based on Large-scale Triaxial Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449.
[17]
HESHMATI A, TABIBNEJAD A, SALEHZADEH H, et al. Experimental Evaluation of Collpase Deformation Behavior of a Rockfill Material[J]. International Journal of Civil Engineering, 2015, 13: 40-53.
[18]
柏树田, 周晓光. 堆石在平面应变条件下的强度和应力-应变关系[J]. 岩土工程学报, 1991, 13(4): 33-40.
(BAI Shu-tian, ZHOU Xiao-guang. Strength and Stress-strain Relationship of Rockflll under Plane Strain Condition[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(4): 33-40. (in Chinese))
[19]
陈鸥, 左永振, 孔宪勇. 砾石土强度和变形的平面应变试验研究[J]. 人民长江, 2010, 41(9): 69-72.
(CHEN Ou, ZUO Yong-zhen, KONG Xian-yong. Test of Plane Strain and Study on of Strength and Deformation of Gravel Soil[J]. Yangtze River, 2010, 41(9): 69-72. (in Chinese))
[20]
LADE P V, WANG Q. Analysis of Shear Banding in True Triaxial Tests on Sand[J]. Journal of Engineering Mechanics, 2001, 127(8): 762-768.
[21]
CHOI C, ARDUINO P, HARNEY M D. Development of a True Triaxial Apparatus for Sands and Gravels[J]. Geotechnical Testing Journal, 2008, 31(1): 32-44.
[22]
HOYOS L R, PÉREZ-RUIZ D D, PUPPALA A J. Refined True Triaxial Apparatus for Testing Unsaturated Soils under Suction-controlled Stress Paths[J]. International Journal of Geomechanics, 2012, 12(3): 281-291.
[23]
吕玺琳, 黄茂松, 钱建固. 真三轴状态下砂土的强度参数[J]. 岩土力学, 2009, 30(4): 981-984.
( Xi-lin, HUANG Mao-song, QIAN Jian-gu. Strength Parameter of Sands under True Triaxial Test[J]. Rock and Soil Mechanics, 2009, 30(4): 981-984. (in Chinese))
[24]
扈萍, 黄茂松, 马少坤, 等. 粉细砂的真三轴试验与强度特性[J]. 岩土力学, 2011, 32(2): 465-470.
(HU Ping, HUANG Mao-song, MA Shao-kun, et al. True Triaxial Tests and Strength Characteristics of Silty Sand[J]. Rock and Soil Mechanics, 2011, 32(2): 465-470. (in Chinese))
[25]
张敏, 许成顺, 杜修力, 等. 中主应力系数及应力路径对砂土剪切特性影响的真三轴试验研究[J]. 水利学报, 2015, 46(9):1072-1079.
(ZHANG Min, XU Cheng-shun, DU Xiu-li, et al. True Triaxial Experimental Research on Shear Behaviors of Sand under Different Intermediate Principal Stresses and Different Stress Paths[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1072-1079. (in Chinese))
[26]
邵生俊, 陈菲, 代亚锋, 等. 结构性黄土的剪切带及强度特性的真三轴试验研究[J]. 岩土力学, 2015, 36(增刊1): 66-70, 84.
(SHAO Sheng-jun, CHEN Fei, DAI Ya-feng, et al. True Triaxial Test Study on Shear Band and Strength Characteristics of Structural Loess[J]. Rock and Soil Mechanics, 2015, 36(Supp.1):66-70, 84. (in Chinese))
[27]
施维成, 朱俊高, 代国忠, 等. 球应力和偏应力对粗粒土变形影响的真三轴试验研究[J]. 岩土工程学报, 2015, 37(5): 776-783.
(SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, et al. True Triaxial Tests on Influence of Spherical and Deviatoric Stresses on Deformation of Coarse-grained Soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. (in Chinese))
[28]
XIAO Y, LIU H, SUN Y, et al. Stress-Dilatancy Behaviors of Coarse Granular Soils in Three-dimensional Stress Space[J]. Engineering Geology, 2015, 195: 104-110.
[29]
周跃峰, 潘家军, 程展林, 等. 基于大型真三轴试验的砂砾石料强度-剪胀特性研究[J]. 岩石力学与工程学报, 2017, 36(11):2818-2825.
(ZHOU Yue-feng, PAN Jia-jun, CHENG Zhan-lin, et al. Strength and Dilation of Sandy Gravel Material Based on Large-scale True Triaxial Tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2818-2825. (in Chinese))
[30]
PAN J, JIANG J, CHENG Z, et al. Large-scale True Triaxial Test on Stress-strain and Strength Properties of Rockfill[J]. International Journal of Geomechanics, 2020, DOI:10.1061/(asce)gm.1943-5622.0001527.
[31]
KJELLMAN W. Report on an Apparatus for Consummate Investigation of the Mechanical Properties of Soils[C]// International Society for Soil Mechanics and Geotechnical Engineering. Proceedings of the 1st ICSMFE, Harvard, June 22-26, 1936:16-20.
[32]
黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1981.
(HUANG Wen-xi. Engineering Properties of Soils[M]. Beijing: Water Resources and Electric Power Press, 1981. (in Chinese))
[33]
钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 2003.
(QIAN Jia-huan, YIN Zong-ze. Theory and Numerical Methods for Soil Engineering[M]. Beijing: China Water Power Press, 2003. (in Chinese))
[34]
YAMAMURO J A, LADE P V. Large Stress Reversals in True Triaxial Tests on Cross-anisotropic Sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(7): 953-965.
[35]
ZHAO J, GUO N. Unique Critical State Characteristics in Granular Media Considering Fabric Anisotropy[J]. Géotechnique, 2013, 63(8): 695-704.
[36]
JIMENEZ R, MA X. A Note on the Strength Symmetry Imposed by Mogi’s True-triaxial Criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 17-21.
[37]
ANHDAN L Q, KOSEKI J, SATO T. Evaluation of Quasi-elastic Properties of Gravel Using a Large-scale True Triaxial Apparatus[J]. Geotechnical Testing Journal, 2006, 29(5): 374-384.
[38]
张铎, 刘洋, 吴顺川. 控制应力路径散体材料真三轴试验强度特征的离散元模拟与细观机制分析[J]. 岩土力学, 2016, 37(增刊1): 509-520.
(ZHANG Duo, LIU Yang, WU Shun-chuan. Discrete Element Simulation and Meso-mechanism Analysis of True Triaxial Test Strength Characteristics of Granular Materials Controlling Stress Path[J]. Rock and Soil Mechanics, 2016, 37(Supp.1):509-520. (in Chinese))
[39]
WOOD D M. Soil Behaviour and Critical State Soil Mechanics[M]. Cambridge, UK: Cambridge University Press, 1991.
[40]
LI X S, DAFALIAS Y F. Dilatancy for Cohesionless Soils[J]. Géotechnique, 2000, 50(4):449-460.
[41]
HUANG X, HANLEY K J, O’SULLIVAN C, et al. DEM Analysis of the Influence of the Intermediate Stress Ratio on the Critical-state Behaviour of Granular Materials[J]. Granular Matter, 2014, 16(5):641-655.
[42]
ZHOU W, LIU J, MA G, et al. Three-dimensional DEM Investigation of Critical State and Dilatancy Behaviors of Granular Materials[J]. Acta Geotechnica, 2017, 12(3): 527-540.
[43]
BEEN K, JEFFERIES M G. A State Parameter for Sands[J]. Géotechnique, 1985, 35(2): 99-112.
[44]
蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8):1122-1128.
(CAI Zheng-yin, LI Xiang-song. Development of Dilatancy Theory and Constitutive Model of Sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8):1122-1128. (in Chinese))
[45]
CARRERA A, COOP M, LANCELLOTTA R. Influence of Sample Preparation Techniques Ad Stress Path Followed on the Location of the Critical State Line: an Example of a Silty-dsandy Tailing[C]// International Society for Soil Mechanics and Geotechnical Engineering. Proceedings of the Fifth International Symposium on Deformation Characteristics of Geomaterials. Seoul, September 1-3, 2011: 526-532.
[46]
邵生俊, 谢定义. 土的变形非线性与剪缩剪胀性新认识[J]. 岩土工程学报, 2000, 22(1): 72-76.
(SHAO Sheng-jun, XIE Ding-yi. New Consideration on Nonlinear and Dilatancy Deformation Characteristics of Soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 72-76. (in Chinese))
[47]
孙海忠, 黄茂松. 考虑粗粒土应变软化特性和剪胀性的本构模型[J]. 同济大学学报(自然科学版), 2009, 37(6): 727-732.
(SUN Hai-zhong, HUANG Mao-song. A Constitutive Model for Coarse Granular Material Incorporating both Strain Work-softening and Dilatancy[J]. Journal of Tongji University (Natural Science), 2009, 37(6): 727-732. (in Chinese))
[48]
TO E C Y, THAM L G, ZHOU Y D. An Elasto-plastic Model for Saturated Loosely Compacted Completely Decomposed Granite[J]. Geomechanics and Geoengineering, 2008, 3(1): 13-25.
[49]
周跃峰, 谭国焕, 甄伟文. 原状黄土剪缩性测试与理论分析[J]. 岩石力学与工程学报, 2015, 34(6):1242-1249.
(ZHOU Yue-feng, TAN Guo-huan, ZHEN W M. Testing and Theoretical Analysis on Contractive Behavior of Undisturbed Loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1242-1249. (in Chinese))
[50]
ROWE P W. The Stress-dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
[51]
NOVA R, WOOD D M. A Constitutive Model for Sand in Triaxial Compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 255-278.
[52]
迟明杰, 赵成刚, 李小军. 剪胀性砂土本构模型的研究[J]. 岩土力学, 2008, 29(11): 2939-2944.
(CHI Ming-jie, ZHAO Cheng-gang, LI Xiao-jun. Research on Constitutive Model for Dilatant Sand[J]. Rock and Soil Mechanics, 2008, 29(11): 2939-2944. (in Chinese))
[53]
刘斯宏, 沈超敏, 毛航宇, 等. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
(LIU Si-hong, SHEN Chao-min, MAO Hang-yu, et al. State-dependent Elastoplastic Constitutive Model for Rockfill Materials[J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898. (in Chinese))
[54]
黄茂松, 曲勰, 吕玺琳. 基于状态相关本构模型的松砂静态液化失稳数值分析[J]. 岩石力学与工程学报, 2014, 33(7): 1479-1487.
(HUANG Mao-song, QU Xie, Xi-lin. Instability and Static Liquefaction Analysis of Loose Sands with a State-dependent Constitutive Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1479-1487. (in Chinese))
[55]
姚仰平, 孙凯, 路德春. 岩土材料塑性应变增量方向的确定[J]. 力学学报, 2007, 39(5): 692-698.
(YAO Yang-ping, SUN Kai, LU De-chun. Determination of the Direction of Plastic Strain Increment for Geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 692-698. (in Chinese))
[56]
DUNCAN J M, BYRNE P, WONG K S, et al. Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stress and Movement in Soil Masses[R]. California: University of California, 1980.
[57]
沈珠江. 土体应力应变分析的一种新模型[C]// 第五届土力学及基础工程学术讨论会论文集. 北京: 中国建筑工业出版社, 1990:101-105.
(SHEN Zhu-jiang. A New Model for Stress-Strain Relationship Analysis of Soil[C]// Proceedings of the 5th Symposium on Soil Mechanics and Foundation Engineering. Beijing: China Architecture and Building Press, 1990:101-105. (in Chinese))
[58]
殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988, 10(4): 64-71.
(YIN Zong-ze. A Double Yield Surface Stress-strain Model of Soil[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(4): 64-71. (in Chinese))
[59]
杨光华, 介玉新, 李广信, 等. 土的多重势面模型及其验证[J]. 岩土工程学报, 1999, 21(5):578-582.
(YANG Guang-hua, JIE Yu-xin, LI Guang-xin, et al. Multi Potential Surface Model for Soils and Its Verification[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 578-582. (in Chinese))
[60]
程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467.
(CHENG Zhan-lin, JIANG Jing-shan, DING Hong-shun, et al. Nonlinear Dilatancy Model for Coarse-grained Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467. (in Chinese))
[61]
KAN M E, TAIEBAT H A. A Bounding Surface Plasticity Model for Highly Crushable Granular Materials[J]. Soils and Foundations, 2014, 54(6): 1188-1201.
[62]
DESAI C S. Disturbed State Concept as Unified Constitutive Modeling Approach[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 277-293.
[63]
YAO Y P, LIU L, LUO T. UH Model for Granular Soils[C]// WU W, YU H S. Proceedings of China-Europe Conference on Geotechnical Engineering. Cham: Springer, 2018: 108-111.
[64]
SALIM W, INDRARATNA B. A New Elastoplastic Constitutive Model for Coarse Granular Aggregates Incorporating Particle Breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657-671.
[65]
贾宇峰, 迟世春, 林皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. 岩土力学, 2009, 30(11): 3261-3266, 3272.
(JIA Yu-feng, CHI Shi-chun, LIN Gao. Constitutive Model for Coarse Granular Aggregates Incorporating Particle Breakage[J]. Rock and Soil Mechanics, 2009, 30(11): 3261-3266, 3272. (in Chinese))
[66]
米占宽, 李国英, 陈生水. 基于破碎能耗的粗颗粒料本构模型[J]. 岩土工程学报, 2012, 34(10): 1801-1811.
(MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive Model for Coarse Granular Materials Based on Breakage Energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811. (in Chinese))

基金

国家自然科学基金项目(51979010)
国家自然科学基金项目(U21A20158)
中央公益性科研院所基本科研业务费项目(CKSF2023318/YT)

编辑: 占学军
PDF(962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/