粗粒土力学特性大型平面应变试验研究

姜景山, 左永振, 程展林, 黄鑫, 张超, 王志华

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (1) : 129-135.

PDF(3701 KB)
PDF(3701 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (1) : 129-135. DOI: 10.11988/ckyyb.20230974
岩土工程

粗粒土力学特性大型平面应变试验研究

作者信息 +

Mechanical Properties of Coarse-grained Soil in Large-scale Plane Strain Tests

Author information +
文章历史 +

摘要

土石坝填料一般处于平面应变状态,目前填料力学特性研究基本采用大型三轴试验。由于三轴应力状态下中主应力等于小主应力,平面应变状态下大坝填料的力学性能会被低估。为充分认识填料潜能,科学设计和合理评估土石坝,有必要对填料开展平面应变试验研究。应用大型真三轴仪对填料进行了大型平面应变试验,共开展了4种不同初始干密度的粗粒土平面应变各向等压固结排水剪切试验。结果表明:应力-应变关系主要为应变硬化型,应力曲线呈爬升型,体变表现为剪缩。某一小主应力下,大小主应力之差的最大值随初始干密度的增大呈线性增大;初始干密度一定时,大小主应力之差的最大值与小主应力呈线性关系增大。初始剪切阶段,小主应力一定时,偏应力与球应力之比曲线斜率随初始干密度的增大而增大,随剪切变形的发展,不同初始干密度的应力比曲线逐渐趋于接近。偏应力随球应力的增大单调增加则对应应变硬化型,若偏应力随球应力的增大先增加后减小则对应应变软化型。相同小主应力时,初始弹性模量随初始干密度的增大而增大,近似呈线性关系;某一初始干密度下,初始弹性模量随小主应力的增大基本呈线性关系增大。中主应力系数随大主应力方向应变的增大而增大,曲线形态呈三折线形,初始剪切阶段增长较为缓慢,随剪切变形的增大增长相对加快并呈线性关系增大,如曲线末端下弯为应变硬化型,曲线末端上翘为应变软化型。

Abstract

At present, large-scale triaxial tests are used to investigate the mechanical properties of the filling of earth-rockfill dams, which are generally under plane strain state. Because the intermediate principal stress is equal to the minor principal stress in triaxial stress state, the mechanical properties of the filling under plane strain state will be underestimated. To fully comprehend the potential of the fill material for scientific design and rational evaluation of earth-rockfill dams, it is necessary to conduct plane strain test of the filling material. Large-scale plane strain tests were performed on the filling material using a large-scale true triaxial apparatus. A series of plane strain isotropic consolidation and drainage shear tests were carried out on coarse-grained soils with four different initial dry densities. Test results indicate that the stress-strain relationship predominantly exhibits strain hardening, with a rising stress curve and shear shrinkage-induced volumetric changes. Under a given minor principal stress, the maximal difference between the major and minor principal stresses increases linearly with the initial dry density. Similarly, when the initial dry density remains constant, this difference also increases linearly with minor principal stress. During the initial shear stage, the slope of the stress ratio curve between deviatoric and spherical stresses rises with increasing initial dry density. As shear deformation progresses, the stress ratio curves for different initial dry densities converge. A monotonically increasing deviatoric stress with spherical stress denotes strain hardening, whereas a deviatoric stress that first rises and then falls indicates strain softening. The initial elastic modulus under the same minor principal stress rises linearly with the initial dry density. At a specific initial dry density, the initial modulus increases linearly with the minor principal stress. The intermediate principal stress coefficient grows with the strain in the major principal stress direction, forming a three-segment broken line curve. Initially, the growth is slow during shear stage, but it accelerates linearly with increasing shear deformation. A slightly downward-bent curve end correlates with strain hardening, while a slightly upward-bent end corresponds to strain softening.

关键词

粗粒土 / 大型平面应变试验 / 力学特性 / 主应力 / 偏应力 / 球应力 / 大型真三轴仪

Key words

coarse-grained soil / large-scale plane strain test / mechanical property / principal stress / deviatoric stress / spherical stress / large-scale true triaxial apparatus

引用本文

导出引用
姜景山, 左永振, 程展林, . 粗粒土力学特性大型平面应变试验研究[J]. 长江科学院院报. 2025, 42(1): 129-135 https://doi.org/10.11988/ckyyb.20230974
JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Mechanical Properties of Coarse-grained Soil in Large-scale Plane Strain Tests[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 129-135 https://doi.org/10.11988/ckyyb.20230974
中图分类号: TU411 (实验室试验(室内土工试验))   

参考文献

[1]
路德春, 姚仰平, 周安楠. 土体平面应变条件下的主应力关系[J]. 岩石力学与工程学报, 2006, 25(11):2320-2326.
(LU De-chun, YAO Yang-ping, ZHOU An-nan. Relationship between Principal Stresses of Soil Mass under Plane Strain Condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2320-2326. (in Chinese))
[2]
姜景山, 左永振, 程展林, 等. 应力状态对粗粒料力学特性影响的大型真三轴试验[J]. 岩土力学, 2020, 41(11):3563-3572.
(JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Effects of Stress State on Mechanical Properties of Coarse Granular Material Using Large-Scale True Triaxial Tests[J]. Rock and Soil Mechanics, 2020, 41(11):3563-3572. (in Chinese))
[3]
SOLEIMANI-FARD H, KÖNIG D, GOUDARZY M. Plane Strain Shear Strength of Unsaturated Fiber-reinforced Fine-grained Soils[J]. Acta Geotechnica, 2022, 17(1): 105-118.
[4]
WANG Q, DU X, GONG Q. Undrained Shear Strength of K0 Consolidated Soft Clays under Triaxial and Plane Strain Conditions[J]. International Journal of Applied Mechanics, 2014, 6(3): 1450032.
[5]
张玉, 邵生俊, 刘瑾, 等. 平面应变加、卸荷条件下考虑初始应力的原状黄土强度与变形特性试验研究[J]. 土木工程学报, 2019, 52(5): 90-100.
(ZHANG Yu, SHAO Sheng-jun, LIU Jin, et al. Experiment Study on Strength and Deformation Characteristics of Intact Loess Considering Initial Stress under Plane Strain Loading and Unloading Conditions[J]. China Civil Engineering Journal, 2019, 52(5): 90-100. (in Chinese))
[6]
李宝平, 杨倩, 张玉, 等. 初始固结应力对平面应变黄土剪切破坏特性影响[J]. 水文地质工程地质, 2020, 47(5): 92-99.
(LI Bao-ping, YANG Qian, ZHANG Yu, et al. Effect of Initial Solidification Stress on Shear Failure Characteristics of Loess under the Plane Strain Condition[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 92-99. (in Chinese))
[7]
LIU B, KONG L, LI C, et al. Evolution of Shear Band in Plane Strain Compression of Naturally Structured Clay with a High Sensitivity[J]. Applied Sciences, 2022, 12(3): 1180.
[8]
庄丽, 宫全美. 减围压平面应变压缩试验条件下丰浦砂中剪切带特性研究[J]. 岩土力学, 2016, 37(增刊1): 201-208.
(ZHUANG Li, GONG Quan-mei. Shear Band Characteristics of Toyoura Sand in Plane Strain Compression with Decreasing Confining Pressure[J]. Rock and Soil Mechanics, 2016, 37(Supp.1): 201-208.
[9]
TANG H, DU T, ZHANG L, et al. A Plane Strain Testing Apparatus Characterized by Flexible Loading and Noncontact Deformation Measurement and Its Application to the Study of Shear Band Failure of Sand[J]. International Journal of Distributed Sensor Networks, 2018, 14(9): 155014771879904.
[10]
郭鸿, 骆亚生, 胡连信. 平面应变状态下黄土蠕变研究[J]. 西北农林科技大学学报, 2016, 44(11): 209-214.
(GUO Hong, LUO Ya-sheng, HU Lian-xin. Loess Creep in Plane Strain Conditions[J]. Journal of Northwest A & F University(Nat. Sci. Ed.), 2016, 44(11): 209-214. (in Chinese))
[11]
张玉, 范特佳, 许晨阳, 等. 平面应变条件下原状Q3黄土的结构性演化特性研究[J]. 土木工程学报, 2022, 55(9): 65-77.
(ZHANG Yu, FAN Te-jia, XU Chen-yang, et al. Study on Structure Evolution Characteristics of Undisturbed Q3 Loess under Plane-Strain Condition[J]. China Civil Engineering Journal, 2022, 55(9): 65-77. (in Chinese))
[12]
施维成, 朱俊高, 张坤勇, 等. 平面应变条件下粗粒土的变形特性试验研究[J]. 岩土力学, 2013, 34(1):101-108.
(SHI Wei-cheng, ZHU Jun-gao, ZHANG Kun-yong, et al. Experimental Study of Deformation Characteristics of Coarse-grained Soil under Plane Strain Condition[J]. Rock and Soil Mechanics, 2013, 34(1):101-108. (in Chinese))
[13]
陈鸥, 左永振, 孔宪勇. 砾石土强度和变形的平面应变试验研究[J]. 人民长江, 2010, 41(9):69-72.
(CHEN Ou, ZUO Yong-zhen, KONG Xian-yong. Test of Plane Strain and Study of Strength and Deformation of Gravel Soil[J]. Yangtze River, 2010, 41(9): 69-72. (in Chinese))
[14]
WANATOWSKI D, CHU J. Drained Behaviour of Changi Sand in Triaxial and Plane-Strain Compression[J]. Geomechanics and Geoengineering, 2007, 2(1): 29-39.
[15]
李广信, 黄永男, 张其光. 土体平面应变方向上的主应力[J]. 岩土工程学报, 2001, 23(3): 358-361.
(LI Guang-xin, HUANG Yong-nan, ZHANG Qi-guang. The Principal Stress of Soil in the Direction of Plane Strain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3):358-361. (in Chinese))
[16]
ZHUANG L, NAKATA Y, KIM U-G. Influence of Relative Density, Particle Shape, and Stress Path on the Plane Strain Compression Behavior of Granular Materials[J]. Acta Geotechnica, 2014, 9(2): 241-255.
[17]
GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019. (in Chinese))
[18]
姜景山, 左永振, 程展林, 等. 围压和密度对粗粒料临界状态力学特性的影响[J]. 长江科学院院报, 2021, 38(5): 94-102.
摘要
粗粒料的力学特性不仅取决于有效围压,还与密实程度密切相关。通过4组不同初始干密度粗粒料的大型三轴固结排水剪切试验,研究了围压和密度对粗粒料临界状态力学特性的影响。试验结果表明:软化型应力应变曲线破坏状态偏应力大于相变状态偏应力,而相变状态偏应力与临界状态偏应力较为接近;不同围压、不同密度的试验,随着剪切的进行,偏应力与平均正应力的应力比逐渐趋向于临界应力比,软化型试验应力比曲线呈单驼峰型形态,硬化型试验应力比曲线呈爬升型形态;临界孔隙比随临界平均正应力的增大而减小,随初始孔隙比的增大基本呈线性增大。研究成果可为特征状态参数研究和临界状态本构模型的建立提供依据。
(JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Effects of Confining Pressure and Density on Mechanical Properties of Coarse Granular Material under Critical State[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 94-102. (in Chinese))
The mechanical properties of coarse granular material are not only depending on effective confining pressure, but also closely related to compaction degree. The effects of confining pressure and density on mechanical properties of coarse granular material under critical state were investigated using large-scale triaxial consolidation and drainage shear tests on specimens with four different initial dry densities. The deviatoric stress at failure state for softening stress-strain curve is larger than that at phase transformation state which is closer to the deviatoric stress at critical state. The stress ratio of deviatoric stress to mean normal stress gradually approaches the stress ratio at critical state. The curve of stress ratio for softening stress-strain test displays a single hump shape, while the curve of stress ratio for hardening stress-strain test shows a climbing shape. The critical void ratio decreases with the increase of mean normal stress under critical state, and basically increases linearly with the increase of initial void ratio.

基金

国家自然科学基金-联合基金重点项目(U21A20158)
国家自然科学基金面上项目(51979010)
中央级公益性科研院所基本科研业务费项目(CKSK2023137/YT)
江苏省产学研合作项目(BY2021044)

编辑: 陈敏
PDF(3701 KB)

Accesses

Citation

Detail

段落导航
相关文章

/