基于活跃目标粒子群算法的露顶式平面钢闸门优化

韩一峰, 胡坚柯, 王靖坤

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (1) : 201-207.

PDF(1374 KB)
PDF(1374 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (1) : 201-207. DOI: 10.11988/ckyyb.20230923
水工结构与材料

基于活跃目标粒子群算法的露顶式平面钢闸门优化

作者信息 +

Optimization of Emersed Plane Steel Gate Based on Active Target Particle Swarm Optimization Algorithm

Author information +
文章历史 +

摘要

针对钢闸门优化问题难以获得全局最优解这一问题,提出了一种活跃目标粒子群(Active Target Particle Swarm Optimization,APSO)算法用于露顶式平面钢闸门的优化设计。该算法在传统粒子群(Particle Swarm Optimization,PSO)算法种群中设定一个活跃目标个体,并将该个体引入算法的迭代更新机制中,活跃目标个体的引入增强了算法跳出局部极值、进行全局寻优的能力;并且采用一个综合学习因子代替原始算法中的多个学习因子,进一步提高了算法的收敛速度与稳定性。在满足钢结构强度等约束条件下,以钢闸门总重力为目标函数,对主梁、边柱、面板和次梁等结构参数进行寻优。同时依据优化结果,采用ABAQUS建立有限元模型对钢闸门主梁进行强度复核,结果表明,采用活跃目标粒子群算法对露顶式平面钢闸门进行优化设计能够得到更优的各结构尺寸参数,优化后的钢闸门总重力与文献算例相比降低了15.38%,并且强度复核符合容许应力要求。

Abstract

Addressing the challenge of obtaining global optimal solutions for steel gate optimization problems, this study introduces an active target particle swarm optimization (APSO) algorithm for the optimization design of emersed plane steel gates. APSO incorporates an active target individual into the conventional particle swarm optimization (PSO) population and integrates it into the algorithm’s iterative update mechanism. This enhancement bolsters the algorithm’s capability to escape local optima and enhances its global optimization performance. Furthermore, the APSO algorithm employs a comprehensive learning factor in place of multiple individual learning factors used in traditional PSO, thereby improving the convergence rate and stability. Under constraints imposed by steel structure strength requirements, the APSO algorithm optimizes key structural parameters, including those of the main beam, side columns, panel, and secondary beams, with the objective of minimizing the total weight of the gate. After optimization, finite element analysis (FEA) is conducted using ABAQUS to verify the strength integrity of the main beam based on the optimized design parameters. Findings indicate that the APSO algorithm effectively optimizes the design of emersed plane steel gates, yielding improved structural dimensions. Specifically, the optimized gate design achieves a 15.38% reduction in total weight compared to previous literature examples, while stringent strength checks confirm compliance with allowable stress limits.

关键词

露顶式平面钢闸门 / 容许应力 / 活跃目标粒子群算法 / 强度复核 / 优化设计

Key words

emersed plane steel gate / allowable stress / active target particle swarm optimization algorithm / strength checking / optimization design

引用本文

导出引用
韩一峰, 胡坚柯, 王靖坤. 基于活跃目标粒子群算法的露顶式平面钢闸门优化[J]. 长江科学院院报. 2025, 42(1): 201-207 https://doi.org/10.11988/ckyyb.20230923
HAN Yi-feng, HU Jian-ke, WANG Jing-kun. Optimization of Emersed Plane Steel Gate Based on Active Target Particle Swarm Optimization Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 201-207 https://doi.org/10.11988/ckyyb.20230923
中图分类号: TV663 (闸门)   

参考文献

[1]
SL 74—2019, 水利水电工程钢闸门设计规范[S]. 北京: 中国水利水电出版社, 2019: 1-18.
(SL 74—2019, Design Specification for Steel Gates of Water and Hydropower Projects[S]. Beijing: China Water & Power Press, 2019: 1-18. (in Chinese))
[2]
田涛. 基于ABAQUS的水闸加固设计钢结构的应用仿真研究[J]. 水利技术监督, 2022, 30(5): 192-196.
(TIAN Tao. Application Simulation Study of Steel Structure in Sluice Reinforcement Design Based on ABAQUS[J]. Technical Supervision in Water Resources, 2022, 30(5): 192-196. (in Chinese))
[3]
安徽省水利局勘测设计院. 水工钢闸门设计[M]. 北京: 水利出版社, 1980.
(Survey and Design Institute of Anhui Provincial Water Conservancy Bureau. Design of Hydraulic Steel Gate[M]. Beijing: China Water & Power Press, 1980. (in Chinese))
[4]
仇强, 秦斌, 侯作启, 等. 遗传算法在平板钢闸门优化设计中的应用[J]. 人民黄河, 2010, 32(1): 128-129.
(QIU Qiang, QIN Bin, HOU Zuo-qi, et al. Application of Genetic Algorithm in Optimal Design of Flat Steel Gate[J]. Yellow River, 2010, 32(1): 128-129. (in Chinese))
[5]
蔡元奇, 彭波, 朱以文, 等. 基于ANSYS的遗传算法在水工弧形钢闸门优化设计中的应用[J]. 武汉大学学报(工学版), 2005, 38(5): 50-53.
(CAI Yuan-qi, PENG Bo, ZHU Yi-wen, et al. Application of Genetic Algorithm to Optimization of Hydraulic Steel Radial Gate Based on ANSYS[J]. Engineering Journal of Wuhan University, 2005, 38(5): 50-53. (in Chinese))
[6]
王军, 钟亚丽, 于尧. 基于遗传算法的水工钢闸门优化设计[J]. 人民黄河, 2020, 42(11): 93-96.
(WANG Jun, ZHONG Ya-li, YU Yao. Application of Genetic Algorithms in Optimum Design of Hydraulic Steel Gates[J]. Yellow River, 2020, 42(11): 93-96. (in Chinese))
[7]
ZHANG L, YANG W. Development of Intelligent Integrated Design System for Hydraulic Plane Steel Gate[C]//2021 The 7th International Conference on Hydraulic and Civil Engineering & Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE & SWIDR). November 6-8, 2021. Nanjing, China. New York: IEEE Press, 2021: 105-110.
[8]
REN K, JIA L, HUANG J, et al. Research on Cutting Stock Optimization of Rebar Engineering Based on Building Information Modeling and an Improved Particle Swarm Optimization Algorithm[J]. Developments in the Built Environment, 2023, 13: 100121.
[9]
WU M, DU P, JIANG M, et al. An Integrated Energy System Optimization Strategy Based on Particle Swarm Optimization Algorithm[J]. Energy Reports, 2022, 8: 679-691.
[10]
SHAO J, FAN Z, HUANG Y, et al. Multi-objective Optimization of Double-walled Steel Cofferdams Based on Response Surface Methodology and Particle Swarm Optimization Algorithm[J]. Structures, 2023, 49: 256-266.
[11]
李丝, 杨德锋, 袁周祥. 基于MATLAB粒子群算法弧形钢闸门的优化设计[J]. 水利科技与经济, 2017, 23(10): 1-5.
(LI Si, YANG De-feng, YUAN Zhou-xiang. Optimization Design of Radial Steel Gate Based on MATLAB Particle Swarm Optimization Algorithm[J]. Water Conservancy Science and Technology and Economy, 2017, 23(10): 1-5. (in Chinese))
[12]
郑圣义, 陈笙, 姚辉, 等. 基于APSO算法的水工弧形闸门主框架优化设计[J]. 水力发电, 2017, 43(12):53-56.
(ZHENG Sheng-yi, CHEN Sheng, YAO Hui, et al. Design Optimization for the Main Frame of Hydraulic Radial Gate Based on APSO Algorithm[J]. Water Power, 2017, 43(12): 53-56. (in Chinese))
[13]
钟亚丽, 王军. 平原地区低水头水工钢闸门面板的最优结构布置[J]. 水利规划与设计, 2020(4): 153-157.
(ZHONG Ya-li, WANG Jun. Optimal Structural Arrangement of Hydraulic Steel Gate Plate for Low Water Head in Plain Area[J]. Water Resources Planning and Design, 2020(4): 153-157. (in Chinese))
[14]
张乃良, 孙宗池. 最优化方法[M]. 济南: 山东大学出版社, 1995: 212-231.
(ZHANG Nai-liang, SUN Zong-chi. Optimization Method[M]. Jinan: Shandong University Press, 1995: 212-231. (in Chinese))

编辑: 王慰
PDF(1374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/