高温水冷循环后玄武岩静态压缩力学特性及宏微观损伤演化规律

齐文超, 蔡勇智, 何童, 刘磊, 庞鑫

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (2) : 145-154.

PDF(10369 KB)
PDF(10369 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (2) : 145-154. DOI: 10.11988/ckyyb.20230920
岩土工程

高温水冷循环后玄武岩静态压缩力学特性及宏微观损伤演化规律

作者信息 +

Mechanical Characteristics and Macromicro Damage Evolution of Basalt under Static Compression after High Temperature Water Cooling Cycles

Author information +
文章历史 +

摘要

为了探究高温水冷循环后玄武岩的静态压缩力学特性及宏微观损伤演化规律,利用HUT-106A试验机对3组温度(100、300、450 ℃)下高温水冷循环(1、3、5、7次)处理后的玄武岩试样开展静态单轴压缩试验,并借助SEM对试样压缩断口进行微观试验。结果表明,温度一定时,随着循环次数的增加,玄武岩的质量、波速、纵波峰值强度和弹性模量均呈劣化趋势,应力-应变曲线逐渐变缓,破坏的突发性和脆性减弱,渐进性和塑性增强,在450 ℃水冷循环7次后其劣化程度最为显著。在损伤破坏方面,温度一定时,循环次数的不同,玄武岩的宏微观破坏形式均存在差异,并在450 ℃水冷循环7次后发生塑性破坏;在高温水冷循环和荷载的共同作用下,玄武岩试样的的总损伤变量演化曲线表现出非线性的特征,且曲线随着循环次数的增加而逐渐变缓,表明玄武岩逐渐由脆性向塑性转变。研究成果可供矿山地下工程的安全稳定性分析参考。

Abstract

Static uniaxial compression tests were conducted on basalt samples using the HUT-106A testing machine to investigate the mechanical properties and macro-micro damage evolution laws of basalt subjected to high-temperature water-cooling cycles. The tests involved water-cooling cycles at three different temperatures (100, 300, and 450 ℃) with varying cycle times (1, 3, 5, and 7 times). The compressive fractures of rock samples were observed using SEM. Results reveal that when temperature remains constant and the number of cycles increases, basalt exhibits deteriorating trends in mass, wave velocity, peak strength, and elastic modulus. The stress-strain curve decelerates, and the suddenness and brittleness of failure weaken, whereas the gradualness and plasticity of deformation enhance. The degree of deterioration is most pronounced after seven water-cooling cycles at 450 ℃. In terms of damage, the macro and micro failure modes of basalt vary with the number of cycles at a constant temperature. After seven water-cooling cycles at 450 ℃, basalt exhibits plastic failure. Under the combined action of high-temperature water-cooling cycles and load, the total damage evolution curve of basalt displays nonlinear evolution characteristics, with the curve gradually decelerating as the number of cycles increases. This indicates that basalt transitions from brittle to plastic behavior with increasing cycle times.

关键词

玄武岩 / 高温水冷循环 / 静态压缩力学特性 / 宏微观破坏 / 损伤演化

Key words

basalt / high temperature water cooling cycle / static compression mechanical characteristics / macro-micro damage / damage evolution

引用本文

导出引用
齐文超, 蔡勇智, 何童, . 高温水冷循环后玄武岩静态压缩力学特性及宏微观损伤演化规律[J]. 长江科学院院报. 2025, 42(2): 145-154 https://doi.org/10.11988/ckyyb.20230920
QI Wen-chao, CAI Yong-zhi, HE Tong, et al. Mechanical Characteristics and Macromicro Damage Evolution of Basalt under Static Compression after High Temperature Water Cooling Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(2): 145-154 https://doi.org/10.11988/ckyyb.20230920
中图分类号: TU452 (岩体力学性质及应力理论分析)   

参考文献

[1]
谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5):1283-1305.
XIE He-ping. Research Review of the State Key Research Development Program of China: Deep Rock Mechanics and Mining Theory[J]. Journal of China Coal Society, 2019, 44(5):1283-1305. (in Chinese))
[2]
朱万成, 唐春安, 左宇军. 深部岩体动态损伤与破裂过程[M]. 北京: 科学出版社, 2014: 1-3.
( ZHU Wan-cheng, TANG Chun-an, ZUO Yu-jun. Dynamic Damage and Fracture Process of Deep Rock Mass[M]. Beijing: Science Press, 2014: 1-3. (in Chinese))
[3]
周创兵. 复杂岩体多场广义耦合分析导论[M]. 北京: 中国水利水电出版社, 2008.
( ZHOU Chuang-bing. Introduction to Generalized Multi-field Coupling Analysis for Complex Rock Masses[M]. Beijing: China Water & Power Press, 2008. (in Chinese))
[4]
张蓉蓉. 水热耦合作用下深部岩石动态力学特性及本构模型研究[D]. 淮南: 安徽理工大学, 2019.
( ZHANG Rong-rong. Study on Dynamic Mechanical Properties and Constitutive Model of Deep Rock under Hydrothermal Coupling[D]. Huainan: Anhui University of Science and Technology, 2019. (in Chinese))
[5]
蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
( CAI Mei-feng. Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002. (in Chinese))
[6]
JIANG H, JIANG A, ZHANG F. Comparative Experimental Study on the Physical and Mechanical Properties of Quartz Sandstone after Water-cooling and Natural-cooling under High Temperature[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55(2): qjegh2020-181.
[7]
CUI H, TANG J, JIANG X. Effects of Different Conditions of Water Cooling at High Temperature on the Tensile Strength and Split Surface Roughness Characteristics of Hot Dry Rock[J]. Advances in Civil Engineering, 2020(1):1-23.
[8]
郤保平, 赵阳升.600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898.
XI Bao-ping, ZHAO Yang-sheng. Experimental Research on Mechanical Properties of Water-cooled Granite under High Temperatures within 600 ℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892-898. (in Chinese))
[9]
ZHANG B, TIAN H, DOU B, et al. Macroscopic and Microscopic Experimental Research on Granite Properties after High-temperature and Water-cooling Cycles[J]. Geothermics, 2021, 93: 102079.
[10]
赵怡晴, 吴常贵, 金爱兵, 等. 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7):2233-2240.
ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, et al. Experimental Study of Sandstone Microstructure and Mechanical Properties under High Temperature[J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240. (in Chinese))
[11]
CUI Y, XUE L, ZHAI M, et al. Experimental Investigation on the Influence on Mechanical Properties and Acoustic Emission Characteristics of Granite after Heating and Water-cooling Cycles[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources, 2023, 9(1):88.
[12]
刘建, 朱雄, 徐磊, 等. 高温冷却后花岗岩损伤演化规律研究[J]. 煤炭技术, 2021, 40(2):30-33.
LIU Jian, ZHU Xiong, XU Lei, et al. Study on Damage Evolution Law of Granite after High Temperature Cooling[J]. Coal Technology, 2021, 40(2):30-33. (in Chinese))
[13]
赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报, 2017, 36(1): 142-151.
ZHAO Ya-yong, WEI Kai, ZHOU Jia-qing, et al. Laboratory Study and Micromechanical Analysis of Mechanical Behaviors of Three Thermally Damaged Rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1):142-151. (in Chinese))
[14]
YANG S Q, RANJITH P G, JING H W, et al. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments[J]. Geothermics, 2017, 65: 180-197.
[15]
JIANG H, JIANG A, ZHANG F, et al. Study on Mechanical Properties and Statistical Damage Constitutive Model of Red Sandstone after Heating and Water-cooling Cycles[J]. International Journal of Damage Mechanics, 2022, 31(7):975-998.
[16]
贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6):1568-1578.
JIA Peng, YANG Qi-yao, LIU Dong-qiao, et al. Physical and Mechanical Properties and Related Microscopic Characteristics of High-temperature Granite after Water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. (in Chinese))
[17]
张宇皓, 段志波, 张帆. 高温水冷后花岗岩微观孔径及渗透性分析[J]. 科学技术与工程, 2021, 21(1): 297-302.
ZHANG Yu-hao, DUAN Zhi-bo, ZHANG Fang. Analysis of Micro-pore Structure and Permeability of Granite after Heating and Water Quenching[J]. Science Technology and Engineering, 2021, 21(1): 297-302. (in Chinese))
[18]
GE S, WU C, HE C, et al. Thermal Damage of High-temperature Sandstone Subjected to Cooling Shock and Its Effect on Capturing Acoustic Emission Signals during Fracture[J]. Engineering Failure Analysis, 2023, 145: 107003.
[19]
余莉, 彭海旺, 李国伟, 等. 花岗岩高温-水冷循环作用下的验研究[J]. 岩土力学, 2021, 42(4):1025-1035.
YU Li, PENG Hai-wang, LI Guo-wei, et al. Experimental Study under the Action of Granite High Temperature-water Cooling Cycle[J]. Rock and Soil Mechanics, 2021, 42(4):1025-1035. (in Chinese))
[20]
李春, 胡耀青, 张纯旺, 等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2020, 39(9): 1797-1807.
LI Chun, HU Yao-qing, ZHANG Chun-wang, et al. Brazilian Split Characteristics and Mechanical Property Evolution of Granite after Cyclic Cooling at Different Temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1797-1807. (in Chinese))
[21]
王乐华, 金晶, 张冰祎, 等. 热湿循环作用下砂岩加卸荷力学特性研究[J]. 岩石力学与工程学报, 2018, 37(3): 699-708.
WANG Le-hua, JIN Jing, ZHANG Bing-yi, et al. Experimental Study on Loading and Unloading Mechanical Properties of Sandstone under Heat and Wet Cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 699-708. (in Chinese))
[22]
何童, 徐泽辉, 杜光钢, 等. 高温水冷玄武岩微观机理及物理力学特性分析[J]. 地下空间与工程学报, 2023, 19(2):380-390.
摘要
为研究高温水冷对玄武岩物理力学特性的影响,对常温(25 ℃)和经历高温(100 ℃、300 ℃、450 ℃和600 ℃)水冷处理后的玄武岩试样开展物理测试试验、静态单轴压缩试验、X衍射及电镜扫描试验,分析了高温水冷后试样的微观损伤机理以及试样物理力学特性与温度的相关性。结果表明:高温水冷并未改变玄武岩主要的矿物成分,但对其相对含量有所影响;温度梯度越大,热冲击导致的内部裂纹越多,当温度升至600 ℃时,微观结构出现韧窝破裂形式;随着温度的升高,试样逐渐由灰绿色转变为红色,质量损失率不断增大,纵波波速不断减小,应力应变曲线逐渐变平缓,峰值强度和弹性模量则呈劣化趋势,且劣化程度逐渐加剧;在高温水冷与荷载耦合作用下,试样总损伤变量演化曲线随温度的升高逐渐变缓,表明试样逐渐由脆性转变为塑性。
HE Tong, XU Ze-hui, DU Guang-gang, et al. Analysis of Microscopic Mechanism and Physico-mechanical Properties of High Temperature-water Cooled Basalt[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2):380-390. (in Chinese))
In order to study the effect of high temperature-water cooling on the physical and mechanical properties of basalt, physical test, static uniaxial compression test, X-ray diffraction and electron microscope scanning test were carried out on basalt samples after water cooling at room temperature (25 ℃) and high temperature (100 ℃, 300 ℃, 450 ℃and 600 ℃). The micro damage mechanism of samples after high temperature-water cooling and the correlation between physical and mechanical properties of samples and temperature were analyzed. The results show that high temperature-water cooling does not change the main mineral components of basalt, but has an effect on its relative content; The larger the temperature gradient is, the more internal cracks are caused by thermal shock. When the temperature rises to 600 ℃, the dimple fracture appears in the microstructure. When the temperature is increase, the samples show the change from gray green to red, the enhancing of mass loss rate, the weakening of longitudinal wave velocity, the slowing down of stress-strain curve, the deterioration trend of peak strength and elastic modulus, and the deterioration degree gradually intensifies; Under the coupling action of high temperature water cooling and load, the evolution curve of the total damage variable of the specimen gradually slows down with the increase of temperature, indicating that the specimen gradually changes from brittle to plastic.
[23]
何童. 水热损伤作用后玄武岩静动力学特性研究[D]. 昆明: 昆明理工大学, 2023.
( HE Tong. Study on Static Dynamics of Basalt after Hydrothermal Damage[D]. Kunming: Kunming University of Science and Technology, 2023. (in Chinese))
[24]
彭海旺. 花岗岩高温-水冷循环后物理力学性能及损伤劣化机理研究[D]. 保定: 河北大学, 2021.
( PENG Hai-wang. Study on Physical and Mechanical Properties and Damage Deterioration Mechanism of Granite after High Temperature-water Cooling[D]. Baoding: Heibei University, 2021. (in Chinese))
[25]
王悦青. 卡房矿山主要生产区域地压监测及预警研究[D]. 昆明: 昆明理工大学, 2019.
( WANG Yue-qing. Study on Monitoring and Early Warning of Ground Pressure in Main Production Areas of Kafang Mine[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese))
[26]
2009, GB/T 23561.7—2009,煤和岩石物理力学性质测定方法第7部分:单轴抗压强度测定及软化系数计算方法[S]. 北京: 中国标准出版社, 2009.
(GB/T 23561.7—2009, Methods for Determining Physical and Mechanical Properties of Coal and Rocks-Part 7: Methods for Determining Uniaxial Compressive Strength and Calculation of Softening Coefficient [S]. Beijing: Standards Press of China, 2009. ) (in Chinese)
[27]
陈国飞, 杨圣奇. 高温后大理岩力学性质及其破坏规律研究[J]. 工程力学, 2014, 31(8): 189-196.
CHEN Guo-fei, YANG Sheng-qi. Study on Failure Mechanical Behavior of Marble after High Temperature[J]. Engineering Mechanics, 2014, 31(8): 189-196. (in Chinese))
[28]
郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2194-2207.
XI Bao-ping, WU Yang-chun, ZHAO Yang-sheng. Experimental Study on the Relationship between Macroscopic Mechanical Parameters of Granite and Thermal Shock Velocity under Thermal Shock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2194-2207. (in Chinese))
[29]
吴顺川. 岩石力学[M]. 北京: 高等教育出版社, 2021.
( WU Shun-chuan. Rock Mechanics[M]. Beijing: Higher Education Press, 2021. (in Chinese))
[30]
TODDT P. Effect of Cracks on Elastic Properties of Low Porosity Rocks[D]. Cambridge: Massachusetts Institute of Technology, 1973.
[31]
SHAO S, RANJITH P G, WASANTHA P L P, et al. Experimental and Numerical Studies on the Mechanical Behaviour of Australian Strathbogie Granite at High Temperatures: an Application to Geothermal Energy[J]. Geothermics, 2015, 54: 96-108.
[32]
COLLIN M, ROWCLIFFE D. The Morphology of Thermal Cracks in Brittle Materials[J]. Journal of the European Ceramic Society, 2002, 22(4): 435-445.
[33]
刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411.
LIU Quan-sheng, XU Xi-chang. Damage Analysis of Brittle Rock at High Temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4):408-411. (in Chinese))
[34]
吴政, 张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, 15(1): 55-61.
WU Zheng, ZHANG Cheng-juan. Investigation of Rock Damage Model and Its Mechanical Behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1):55-61. (in Chinese))
[35]
曹文贵, 赵明华, 刘成学. 基于 WeibUll分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231.
CAO Wen-gui, ZHAO Ming-hua, LIU Cheng-xue. Study on the Model and Its Modifying Method for Rock Softening and Damage Based on Weibull Random Distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231. (in Chinese))
[36]
张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, 22(1): 30-34.
ZHANG Quan-sheng, YANG Geng-she, REN Jian-xi. New Study of Damage Variable and Constitutive Equation of Rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30-34. (in Chinese))
[37]
张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476.
ZHANG Hui-mei, YANG Geng-she. Research on Damage Model of Rock under Coupling Action of Freeze-thaw and Load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese))

基金

云南省重大科技专项(202202AG050014)
云南省教育厅科学研究基金项目(2020Y0088)

编辑: 占学军
PDF(10369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/