PDF(10369 KB)
PDF(10369 KB)
PDF(10369 KB)
高温水冷循环后玄武岩静态压缩力学特性及宏微观损伤演化规律
Mechanical Characteristics and Macromicro Damage Evolution of Basalt under Static Compression after High Temperature Water Cooling Cycles
为了探究高温水冷循环后玄武岩的静态压缩力学特性及宏微观损伤演化规律,利用HUT-106A试验机对3组温度(100、300、450 ℃)下高温水冷循环(1、3、5、7次)处理后的玄武岩试样开展静态单轴压缩试验,并借助SEM对试样压缩断口进行微观试验。结果表明,温度一定时,随着循环次数的增加,玄武岩的质量、波速、纵波峰值强度和弹性模量均呈劣化趋势,应力-应变曲线逐渐变缓,破坏的突发性和脆性减弱,渐进性和塑性增强,在450 ℃水冷循环7次后其劣化程度最为显著。在损伤破坏方面,温度一定时,循环次数的不同,玄武岩的宏微观破坏形式均存在差异,并在450 ℃水冷循环7次后发生塑性破坏;在高温水冷循环和荷载的共同作用下,玄武岩试样的的总损伤变量演化曲线表现出非线性的特征,且曲线随着循环次数的增加而逐渐变缓,表明玄武岩逐渐由脆性向塑性转变。研究成果可供矿山地下工程的安全稳定性分析参考。
Static uniaxial compression tests were conducted on basalt samples using the HUT-106A testing machine to investigate the mechanical properties and macro-micro damage evolution laws of basalt subjected to high-temperature water-cooling cycles. The tests involved water-cooling cycles at three different temperatures (100, 300, and 450 ℃) with varying cycle times (1, 3, 5, and 7 times). The compressive fractures of rock samples were observed using SEM. Results reveal that when temperature remains constant and the number of cycles increases, basalt exhibits deteriorating trends in mass, wave velocity, peak strength, and elastic modulus. The stress-strain curve decelerates, and the suddenness and brittleness of failure weaken, whereas the gradualness and plasticity of deformation enhance. The degree of deterioration is most pronounced after seven water-cooling cycles at 450 ℃. In terms of damage, the macro and micro failure modes of basalt vary with the number of cycles at a constant temperature. After seven water-cooling cycles at 450 ℃, basalt exhibits plastic failure. Under the combined action of high-temperature water-cooling cycles and load, the total damage evolution curve of basalt displays nonlinear evolution characteristics, with the curve gradually decelerating as the number of cycles increases. This indicates that basalt transitions from brittle to plastic behavior with increasing cycle times.
玄武岩 / 高温水冷循环 / 静态压缩力学特性 / 宏微观破坏 / 损伤演化
basalt / high temperature water cooling cycle / static compression mechanical characteristics / macro-micro damage / damage evolution
| [1] |
谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5):1283-1305.
|
| [2] |
朱万成, 唐春安, 左宇军. 深部岩体动态损伤与破裂过程[M]. 北京: 科学出版社, 2014: 1-3.
(
|
| [3] |
周创兵. 复杂岩体多场广义耦合分析导论[M]. 北京: 中国水利水电出版社, 2008.
(
|
| [4] |
张蓉蓉. 水热耦合作用下深部岩石动态力学特性及本构模型研究[D]. 淮南: 安徽理工大学, 2019.
(
|
| [5] |
蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
(
|
| [6] |
|
| [7] |
|
| [8] |
郤保平, 赵阳升.600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898.
|
| [9] |
|
| [10] |
赵怡晴, 吴常贵, 金爱兵, 等. 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7):2233-2240.
|
| [11] |
|
| [12] |
刘建, 朱雄, 徐磊, 等. 高温冷却后花岗岩损伤演化规律研究[J]. 煤炭技术, 2021, 40(2):30-33.
|
| [13] |
赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报, 2017, 36(1): 142-151.
|
| [14] |
|
| [15] |
|
| [16] |
贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6):1568-1578.
|
| [17] |
张宇皓, 段志波, 张帆. 高温水冷后花岗岩微观孔径及渗透性分析[J]. 科学技术与工程, 2021, 21(1): 297-302.
|
| [18] |
|
| [19] |
余莉, 彭海旺, 李国伟, 等. 花岗岩高温-水冷循环作用下的验研究[J]. 岩土力学, 2021, 42(4):1025-1035.
|
| [20] |
李春, 胡耀青, 张纯旺, 等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2020, 39(9): 1797-1807.
|
| [21] |
王乐华, 金晶, 张冰祎, 等. 热湿循环作用下砂岩加卸荷力学特性研究[J]. 岩石力学与工程学报, 2018, 37(3): 699-708.
|
| [22] |
何童, 徐泽辉, 杜光钢, 等. 高温水冷玄武岩微观机理及物理力学特性分析[J]. 地下空间与工程学报, 2023, 19(2):380-390.
为研究高温水冷对玄武岩物理力学特性的影响,对常温(25 ℃)和经历高温(100 ℃、300 ℃、450 ℃和600 ℃)水冷处理后的玄武岩试样开展物理测试试验、静态单轴压缩试验、X衍射及电镜扫描试验,分析了高温水冷后试样的微观损伤机理以及试样物理力学特性与温度的相关性。结果表明:高温水冷并未改变玄武岩主要的矿物成分,但对其相对含量有所影响;温度梯度越大,热冲击导致的内部裂纹越多,当温度升至600 ℃时,微观结构出现韧窝破裂形式;随着温度的升高,试样逐渐由灰绿色转变为红色,质量损失率不断增大,纵波波速不断减小,应力应变曲线逐渐变平缓,峰值强度和弹性模量则呈劣化趋势,且劣化程度逐渐加剧;在高温水冷与荷载耦合作用下,试样总损伤变量演化曲线随温度的升高逐渐变缓,表明试样逐渐由脆性转变为塑性。
In order to study the effect of high temperature-water cooling on the physical and mechanical properties of basalt, physical test, static uniaxial compression test, X-ray diffraction and electron microscope scanning test were carried out on basalt samples after water cooling at room temperature (25 ℃) and high temperature (100 ℃, 300 ℃, 450 ℃and 600 ℃). The micro damage mechanism of samples after high temperature-water cooling and the correlation between physical and mechanical properties of samples and temperature were analyzed. The results show that high temperature-water cooling does not change the main mineral components of basalt, but has an effect on its relative content; The larger the temperature gradient is, the more internal cracks are caused by thermal shock. When the temperature rises to 600 ℃, the dimple fracture appears in the microstructure. When the temperature is increase, the samples show the change from gray green to red, the enhancing of mass loss rate, the weakening of longitudinal wave velocity, the slowing down of stress-strain curve, the deterioration trend of peak strength and elastic modulus, and the deterioration degree gradually intensifies; Under the coupling action of high temperature water cooling and load, the evolution curve of the total damage variable of the specimen gradually slows down with the increase of temperature, indicating that the specimen gradually changes from brittle to plastic.
|
| [23] |
何童. 水热损伤作用后玄武岩静动力学特性研究[D]. 昆明: 昆明理工大学, 2023.
(
|
| [24] |
彭海旺. 花岗岩高温-水冷循环后物理力学性能及损伤劣化机理研究[D]. 保定: 河北大学, 2021.
(
|
| [25] |
王悦青. 卡房矿山主要生产区域地压监测及预警研究[D]. 昆明: 昆明理工大学, 2019.
(
|
| [26] |
2009, GB/T 23561.7—2009,煤和岩石物理力学性质测定方法第7部分:单轴抗压强度测定及软化系数计算方法[S]. 北京: 中国标准出版社, 2009.
(GB/T 23561.7—2009, Methods for Determining Physical and Mechanical Properties of Coal and Rocks-Part 7: Methods for Determining Uniaxial Compressive Strength and Calculation of Softening Coefficient [S]. Beijing: Standards Press of China, 2009. ) (in Chinese)
|
| [27] |
陈国飞, 杨圣奇. 高温后大理岩力学性质及其破坏规律研究[J]. 工程力学, 2014, 31(8): 189-196.
|
| [28] |
郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2194-2207.
|
| [29] |
吴顺川. 岩石力学[M]. 北京: 高等教育出版社, 2021.
(
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411.
|
| [34] |
吴政, 张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, 15(1): 55-61.
|
| [35] |
曹文贵, 赵明华, 刘成学. 基于 WeibUll分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231.
|
| [36] |
张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, 22(1): 30-34.
|
| [37] |
张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476.
|
/
| 〈 |
|
〉 |