激光粒度仪在特殊土颗粒分析试验中的应用

丁国权, 陈凯

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 123-129.

PDF(1279 KB)
PDF(1279 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 123-129. DOI: 10.11988/ckyyb.20230682
岩土工程

激光粒度仪在特殊土颗粒分析试验中的应用

作者信息 +

Application of Laser Particle Size Analyzer in Grain-size Analysis of Special Soils

Author information +
文章历史 +

摘要

采用激光粒度仪对膨胀土、黄土和红土进行了颗粒分析试验,研究了取样质量和超声波分散时间对试验结果的影响,发现遮光率与取样质量呈现很好的线性正相关,给出了特殊土在激光粒度仪法试验中适宜的遮光率范围(15%~25%)、取样质量(膨胀土取0.1~0.2 g,黄土取0.4~0.8 g,红土取0.2~0.4 g)和超声波分散时间(膨胀土取6 min,黄土和红土取2 min);激光粒度仪法试验结果的离散性,对于黄土和膨胀土较小,但对红土相对较大,红土平行试验中粒组含量极差的最大值为10.1%;与密度计法相比,激光粒度仪法测得的胶粒(0,0.002]mm含量偏小,而黏粒(0.002,0.005]mm或更大粒组的含量则偏大,可能是因为两者试验原理的不同而导致的;2种方法对红土的测试结果差异较大,与红土的特殊性质有一定关系。研究成果为激光粒度仪在特殊土颗粒分析试验中的应用提供了借鉴。

Abstract

A laser particle size analyzer was employed to test the grain size of expansive soil, loess, and laterite to examine how sample mass and ultrasonic dispersion time affect the test results. A strong linear positive correlation was observed between shading rate and sample mass. Optimal conditions were determined for the laser particle size analyzer tests: shading rate between 15% and 25%, sample mass of 0.1-0.2 g for expansive soil, 0.4-0.8 g for loess, and 0.2-0.4 g for laterite, with ultrasonic dispersion times of 6 minutes for expansive soil and 2 minutes for loess and laterite. The test results are less discrete for loess and expansive soil but more discretized for laterite. In parallel tests, the maximum range in fraction content for laterite reached 10.1%. Compared to the densimeter method, the laser particle size analyzer reported lower contents of colloidal particles (smaller than 0.002 mm) and higher contents of clay particles (0.005-0.002 mm) or larger fractions. These discrepancies are likely due to the different principles underlying the two methods. The substantial differences in test results for laterite may be attributed to its unique properties. This study provides valuable insights for utilizing laser particle size analyzers in the grain-size analysis of special soils.

关键词

激光粒度仪 / 特殊土 / 颗粒分析 / 密度计法 / 遮光率

Key words

laser particle size analyzer / special soil / grain-size analysis / densimeter method / shading rate

引用本文

导出引用
丁国权, 陈凯. 激光粒度仪在特殊土颗粒分析试验中的应用[J]. 长江科学院院报. 2024, 41(9): 123-129 https://doi.org/10.11988/ckyyb.20230682
DING Guo-quan, CHEN Kai. Application of Laser Particle Size Analyzer in Grain-size Analysis of Special Soils[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 123-129 https://doi.org/10.11988/ckyyb.20230682
中图分类号: TU41 (土工试验)   

参考文献

[1]
YANG Y, WANG L, WENDROTH O, et al. Is the Laser Diffraction Method Reliable for Soil Particle Size Distribution Analysis?[J]. Soil Science Society of America Journal, 2019, 83(2): 276-287.
[2]
BITTELLI M, PELLEGRINI S, OLMI R, et al. Experimental Evidence of Laser Diffraction Accuracy for Particle Size Analysis[J]. Geoderma, 2022, 409: 115627.
[3]
赵寿刚, 张学义, 杨小平, 等. MS2000激光粒度仪与密度计法的土工颗分对比试验[J]. 南水北调与水利科技, 2008, 6(5): 70-72.
(ZHAO Shou-gang, ZHANG Xue-yi, YANG Xiao-ping, et al. Soil Granulometric Grading Comparative Experiments of MS2000 Laser and Densimeter Methods[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(5): 70-72. (in Chinese))
[4]
王保田, 黄待望, 董薇, 等. 激光粒度仪颗粒分析试验应用研究[J]. 三峡大学学报(自然科学版), 2015, 37(6): 34-37.
(WANG Bao-tian, HUANG Dai-wang, DONG Wei, et al. Application of Laser Particle Size Analyzer to Geotechnical Particle Size Assaying[J]. Journal of China Three Gorges University (Natural Sciences), 2015, 37(6): 34-37. (in Chinese))
[5]
王雪奎, 朱耀庭, 张嘉莹, 等. 激光粒度分析仪法和密度计法在土工颗粒分析试验中的对比研究[J]. 中国港湾建设, 2020, 40(5): 40-43.
(WANG Xue-kui, ZHU Yao-ting, ZHANG Jia-ying, et al. Comparative Study of Laser Particle Analysis and Hydrometer Method in the Geotechnical Particle Analysis Test[J]. China Harbour Engineering, 2020, 40(5): 40-43. (in Chinese))
[6]
居奕含, 蒋敏华, 刘立, 等. 激光粒度仪法与传统规范法的颗分比对试验研究[J]. 工程勘察, 2022, 50(8): 1-6.
(JU Yi-han, JIANG Min-hua, LIU Li, et al. Comparative Experimental Study on Particle Fractions Measurement by Laser Particle Sizer Method and Traditional Standard Method[J]. Geotechnical Investigation & Surveying, 2022, 50(8): 1-6. (in Chinese))
[7]
SHANG Y, KAAKINEN A, BEETS C J, et al. Aeolian Silt Transport Processes as Fingerprinted by Dynamic Image Analysis of the Grain Size and Shape Characteristics of Chinese Loess and Red Clay Deposits[J]. Sedimentary Geology, 2018, 375: 36-48.
[8]
PIERI L, BITTELLI M, PISA P R. Laser Diffraction, Transmission Electron Microscopy and Image Analysis to Evaluate a Bimodal Gaussian Model for Particle Size Distribution in Soils[J]. Geoderma, 2006, 135: 118-132.
[9]
BITTELLI M, ANDRENELLI M C, SIMONETTI G, et al. Shall we Abandon Sedimentation Methods for Particle Size Analysis in Soils?[J]. Soil and Tillage Research, 2019, 185: 36-46.
[10]
GOOSSENS D. Techniques to Measure Grain-size Distributions of Loamy Sediments: a Comparative Study of Ten Instruments for Wet Analysis[J]. Sedimentology, 2008, 55(1): 65-96.
[11]
游波, 王保田, 赵辰洋. 激光粒度仪在土工颗粒分析中的应用研究[J]. 人民长江, 2012, 43(24): 50-54.
(YOU Bo, WANG Bao-tian, ZHAO Chen-yang. Application of Laser Particle Size Analyzer in Geotechnical Particle Size Analysis[J]. Yangtze River, 2012, 43(24): 50-54. (in Chinese))
[12]
孟令福, 常高奇. 激光粒度分析仪在土颗粒分析试验中的应用[J]. 港工技术, 2022, 59(4): 112-115.
(MENG Ling-fu, CHANG Gao-qi. Application of Laser Particle Analyzer in Soil Particle Analysis Test[J]. Port Engineering Technology, 2022, 59(4): 112-115. (in Chinese))
[13]
范北林, 闵凤阳, 黎礼刚, 等. 几种模型沙激光粒度仪测试结果与筛析-沉降法的比较[J]. 长江科学院院报, 2009, 26(12): 6-9, 40.
(FAN Bei-lin, MIN Feng-yang, LI Li-gang, et al. Comparison between Grain Sizes Measured by Laser Diffract Instrument and Sieve-pipette Methods for Several Model Sediments[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(12): 6-9, 40. (in Chinese))
[14]
殷杰, 邓永锋, 徐飞. 激光衍射粒度仪在连云港软土颗粒分析中的应用[J]. 河海大学学报(自然科学版), 2008, 36(3): 379-383.
(YIN Jie, DENG Yong-feng, XU Fei. Application of a Laser Grain Size Analyzer in Grain Analysis of the Soft Clay in Lianyungang[J]. Journal of Hohai University (Natural Sciences), 2008, 36(3): 379-383. (in Chinese))
[15]
尹长权. 激光粒度分布仪在土工试验颗粒分析中控制参数的研究[J]. 中国港湾建设, 2018, 38(2): 12-15, 38.
(YIN Chang-quan. Control Parameters of Laser Diffraction Grain Size Analyzer in Particle Size Analysis of Geotechnical Experiments[J]. China Harbour Engineering, 2018, 38(2): 12-15, 38. (in Chinese))
[16]
GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019. (in Chinese))
[17]
卢廷浩. 土力学[M]. 南京: 河海大学出版社, 2011.
(LU Ting-hao. Soil Mechanics[M]. Nanjing: Hohai University Press, 2011. (in Chinese))
[18]
刘帅, 符必昌, 赵长明, 等. 不同分散剂对红土的粒度成分试验的影响[J]. 工程勘察, 2019, 47(8): 19-23.
(LIU Shuai, FU Bi-chang, ZHAO Chang-ming, et al. Effects of Different Dispersants on Particle Size Composition Tests of Laterite[J]. Geotechnical Investigation & Surveying, 2019, 47(8): 19-23. (in Chinese))
[19]
张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74.
(ZHANG Xian-wei, KONG Ling-wei. Interaction between Iron Oxide Colloids and Clay Minerals and Its Effect on Properties of Clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese))

基金

长江水科学研究联合基金重点支持项目(U2040221)
大学生创新训练项目(202210294049Z)

编辑: 罗玉兰
PDF(1279 KB)

Accesses

Citation

Detail

段落导航
相关文章

/