PDF(1279 KB)
PDF(1279 KB)
PDF(1279 KB)
激光粒度仪在特殊土颗粒分析试验中的应用
Application of Laser Particle Size Analyzer in Grain-size Analysis of Special Soils
采用激光粒度仪对膨胀土、黄土和红土进行了颗粒分析试验,研究了取样质量和超声波分散时间对试验结果的影响,发现遮光率与取样质量呈现很好的线性正相关,给出了特殊土在激光粒度仪法试验中适宜的遮光率范围(15%~25%)、取样质量(膨胀土取0.1~0.2 g,黄土取0.4~0.8 g,红土取0.2~0.4 g)和超声波分散时间(膨胀土取6 min,黄土和红土取2 min);激光粒度仪法试验结果的离散性,对于黄土和膨胀土较小,但对红土相对较大,红土平行试验中粒组含量极差的最大值为10.1%;与密度计法相比,激光粒度仪法测得的胶粒(0,0.002]mm含量偏小,而黏粒(0.002,0.005]mm或更大粒组的含量则偏大,可能是因为两者试验原理的不同而导致的;2种方法对红土的测试结果差异较大,与红土的特殊性质有一定关系。研究成果为激光粒度仪在特殊土颗粒分析试验中的应用提供了借鉴。
A laser particle size analyzer was employed to test the grain size of expansive soil, loess, and laterite to examine how sample mass and ultrasonic dispersion time affect the test results. A strong linear positive correlation was observed between shading rate and sample mass. Optimal conditions were determined for the laser particle size analyzer tests: shading rate between 15% and 25%, sample mass of 0.1-0.2 g for expansive soil, 0.4-0.8 g for loess, and 0.2-0.4 g for laterite, with ultrasonic dispersion times of 6 minutes for expansive soil and 2 minutes for loess and laterite. The test results are less discrete for loess and expansive soil but more discretized for laterite. In parallel tests, the maximum range in fraction content for laterite reached 10.1%. Compared to the densimeter method, the laser particle size analyzer reported lower contents of colloidal particles (smaller than 0.002 mm) and higher contents of clay particles (0.005-0.002 mm) or larger fractions. These discrepancies are likely due to the different principles underlying the two methods. The substantial differences in test results for laterite may be attributed to its unique properties. This study provides valuable insights for utilizing laser particle size analyzers in the grain-size analysis of special soils.
激光粒度仪 / 特殊土 / 颗粒分析 / 密度计法 / 遮光率
laser particle size analyzer / special soil / grain-size analysis / densimeter method / shading rate
| [1] |
|
| [2] |
|
| [3] |
赵寿刚, 张学义, 杨小平, 等. MS2000激光粒度仪与密度计法的土工颗分对比试验[J]. 南水北调与水利科技, 2008, 6(5): 70-72.
(
|
| [4] |
王保田, 黄待望, 董薇, 等. 激光粒度仪颗粒分析试验应用研究[J]. 三峡大学学报(自然科学版), 2015, 37(6): 34-37.
(
|
| [5] |
王雪奎, 朱耀庭, 张嘉莹, 等. 激光粒度分析仪法和密度计法在土工颗粒分析试验中的对比研究[J]. 中国港湾建设, 2020, 40(5): 40-43.
(
|
| [6] |
居奕含, 蒋敏华, 刘立, 等. 激光粒度仪法与传统规范法的颗分比对试验研究[J]. 工程勘察, 2022, 50(8): 1-6.
(
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
游波, 王保田, 赵辰洋. 激光粒度仪在土工颗粒分析中的应用研究[J]. 人民长江, 2012, 43(24): 50-54.
(
|
| [12] |
孟令福, 常高奇. 激光粒度分析仪在土颗粒分析试验中的应用[J]. 港工技术, 2022, 59(4): 112-115.
(
|
| [13] |
范北林, 闵凤阳, 黎礼刚, 等. 几种模型沙激光粒度仪测试结果与筛析-沉降法的比较[J]. 长江科学院院报, 2009, 26(12): 6-9, 40.
(
|
| [14] |
殷杰, 邓永锋, 徐飞. 激光衍射粒度仪在连云港软土颗粒分析中的应用[J]. 河海大学学报(自然科学版), 2008, 36(3): 379-383.
(
|
| [15] |
尹长权. 激光粒度分布仪在土工试验颗粒分析中控制参数的研究[J]. 中国港湾建设, 2018, 38(2): 12-15, 38.
(
|
| [16] |
GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019. (in Chinese))
|
| [17] |
卢廷浩. 土力学[M]. 南京: 河海大学出版社, 2011.
(
|
| [18] |
刘帅, 符必昌, 赵长明, 等. 不同分散剂对红土的粒度成分试验的影响[J]. 工程勘察, 2019, 47(8): 19-23.
(
|
| [19] |
张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74.
(
|
/
| 〈 |
|
〉 |