以长江源区为研究对象,采用沱沱河站、直门达站实测径流系列,分析两站近60年来径流演变趋势,利用海洋尼诺指数分析ENSO事件的强度与时间特征,研究两站径流丰枯变化对ENSO事件的响应规律,从海-气耦合影响大气环流角度分析ENSO事件对径流的影响机制。研究结果表明,两站均呈现震荡上升的趋势,尤其在2000年以后径流呈现显著增加的趋势。分析ENSO事件发生期间长江源区径流丰枯变化响应规律可知,1960—2000年期间,暖事件发生年份,无论是当年还是次年,长江源区出现径流偏枯的概率较高;冷事件发生年份,两站均呈现出在当年偏枯、次年丰枯概率基本相当的态势。2000年以后,长江源区径流偏丰态势尤为显著。在1970年以前和2000年以后,长江源区径流与ENSO事件之间的时频结构具有一定程度的正相关性。ENSO事件发生后,引起纬向和经向大气环流异常,使得海洋向高原热量和水汽输送产生变化,从而影响青藏高原降水和径流。
Abstract
Based on runoff data collected from the Tuotuohe and Zhimenda hydrological stations, we examined the historical runoff patterns over the past six decades, and analyzed the intensity and temporal characteristics of ENSO (El-Niño Southern Oscillation) events using the Oceanic Niño Index. We also investigated the response of runoff to ENSO events and explored the potential influence of ENSO events on runoff through the lens of sea-air coupling and its impact on atmospheric circulation. The findings revealed an oscillating increasing trend in runoff at both stations, particularly noticeable since 2000, indicating a significant upward trend in runoff. Analysis of the response of runoff in the source region of Yangtze River during ENSO events demonstrated a higher probability of runoff drying up during warm events between 1960 and 2000, regardless of the current year or the subsequent year. Conversely, during cold events, both stations exhibited a comparable probability of drying up in the current year and abundant or dry conditions in the following year. Notably, after 2000, runoff in the source region experienced a substantial increase. Prior to 1970 and after 2000, runoff in the region was positively correlated with ENSO events in terms of time-frequency structure. Following an ENSO event, abnormalities in the zonal and meridional atmospheric circulation occurred, subsequently affecting ocean heat and water vapor transport to the plateau. These changes ultimately impacted the precipitation and runoff patterns in the Qinghai-Tibet Plateau.
关键词
径流 /
ENSO事件 /
气候指数 /
交叉小波分析 /
长江源区
Key words
runoff /
ENSO event /
climate index /
cross wavelet transform /
source region of Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GRIGGS D, NOGUER M. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J]. Computational Geometry, 2013, 18(2):95-123.
[2] ARNELL N W. Climate Change and Global Water Resources[J]. Global Environmental Change, 1999, 9: S31-S49.
[3] 夏 军, 石 卫. 变化环境下中国水安全问题研究与展望[J]. 水利学报, 2016, 47(3): 292-301.
[4] BLENDER R, ZHU X, ZHANG D, et al. Yangtze Runoff, Precipitation, and the East Asian Monsoon in a 2800 Years Climate Control Simulation[J]. Quaternary International, 2011, 244(2): 194-201.
[5] WEI W, CHANG Y, DAI Z. Streamflow Changes of the Changjiang (Yangtze) River in the Recent 60 Years: Impacts of the East Asian Summer Monsoon, ENSO, and Human Activities[J]. Quaternary International, 2014, 336: 98-107.
[6] GONG D, WANG S. Impacts of ENSO on Rainfall of Global Land and China[J]. Chinese Science Bulletin, 1999, 44(9): 852-857.
[7] 王根绪, 沈永平, 刘时银. 黄河源区降水与径流过程对ENSO事件的响应特征[J]. 冰川冻土, 2001, 23(1): 16-21.
[8] ZHU Y M. Interdecadal Variation of the Relationship between Enso and Summer Interannual Climate Variability in China[J]. Journal of Tropical Meteorology, 2007, 13(2): 132-136.
[9] 彭 俊, 凌 敏, 俞珊妮, 等. 长江流域径流量变化过程及其对ENSO和PDO的响应[J]. 地理科学, 2022, 42(3): 515-526.
[10] 蓝永超, 康尔泗, 张济世, 等. 近50年来ENSO与祁连山区气温降水和出山径流的对应关系[J]. 水科学进展, 2002, 13(2): 141-145.
[11] 梁涵洲, 吴其冈, 任雪娟, 等. 观测分析El Niño衰减早晚对南亚与青藏高原夏季降水和气温的影响[J]. 大气科学, 2021, 45(4): 777-798.
[12] 陈虹颖, 徐 峰, 李晓惠, 等. 近65年ENSO事件强度变化及时频特征研究[J]. 热带气象学报, 2017, 33(5): 683-694.
[13] 邵 骏. 基于交叉小波变换的水文多尺度相关分析[J]. 水力发电学报, 2013, 32(2): 22-26, 42.
[14] 朱 钰, 刘时银, 易 颖, 等. “三江并流区”水储量的时空变化特征及其对ENSO的响应[J]. 山地学报, 2020, 38(2): 165-179.
[15] 薛殷宗. ENSO事件对青海湖水位变化影响的研究[D]. 合肥: 安徽农业大学, 2020.
[16] LEE J H, JULIEN P Y. Teleconnections of the ENSO and South Korean Precipitation Patterns[J]. Journal of Hydrology, 2016, 534: 237-250.
[17] 马全杰, 马建华, 朱云通, 等. 黄河兰州以上天然径流对厄尔尼诺事件的响应[J]. 人民黄河, 2000, 22(5): 18-20.
[18] 许武成, 王 文, 马劲松, 等. 1951—2007年的ENSO事件及其特征值[J]. 自然灾害学报, 2009, 18(4): 18-24.
[19] 符淙斌, 孙翠霞, 张金枝. 赤道海温异常与大气的垂直环流圈[J]. 大气科学, 1979, 3(1): 50-57.
[20] 刘永强, 丁一汇. ENSO事件对我国天气气候的影响[J]. 应用气象学报, 1992, 3(4): 473-481.
[21] 王绍武, 龚道溢. 近百年来的ENSO事件及其强度[J]. 气象, 1999, 25(1): 10-14.
[22] 龚道溢, 王绍武. 近百年ENSO对全球陆地及中国降水的影响[J]. 科学通报, 1999, 44(3): 315-320.
[23] 龚道溢, 王绍武. ENSO对中国四季降水的影响[J]. 自然灾害学报, 1998, 7(4): 44-52.
[24] BOTHE O, FRAEDRICH K, ZHU Xin-hua,等. 青藏高原夏季旱涝与大尺度环流的关系[J]. 干旱气象, 2013, 31(4): 845-858.
[25] WEBSTER P J, YANG S. Monsoon and Enso: Selectively Interactive Systems[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(507): 877-926.
[26] HONG C-C, LU M-M, KANAMITSU M. Temporal and Spatial Characteristics of Positive and Negative Indian Ocean Dipole with and without ENSO[J]. Journal of Geophysical Research, 2008, 113(D8): D08107.
[27] 邵 骏, 欧阳硕, 郭 卫, 等. 基于青藏高原冰芯记录的长江源区径流重建[J]. 长江科学院院报, 2022, 39(10): 24-30, 37.
基金
第二次青藏高原综合科学考察研究(2019QZKK0203)