金沙江下游梯级水电开发导致下游水温沿程变化,对鱼类产卵繁衍和生长发育产生了重要影响。基于下游向家坝、朱沱、宜昌和大通4个水文站2002—2022年表层水温监测数据,对比分析了梯级水电建设期、运行期下游江段水温沿程的变化规律。结果表明:①溪洛渡和向家坝两级水电联合运行期,向家坝水文站多年平均最低水温较天然状态升高约1.4 ℃,最低水温出现时间较天然状态滞后约35 d;②乌东德、白鹤滩、溪洛渡和向家坝四级水电站联合运行期,向家坝、朱沱、宜昌和大通4个水文站年最低水温分别较溪洛渡和向家坝两级水电站联合运行期升高约2.0、1.1、0.8、0.7 ℃,年最低水温出现时间较天然状态分别滞后约42、29、11、18 d。研究成果可以为金沙江下游梯级水电站水温生态调度和下游水生态保护提供参考依据。
Abstract
The cascade hydropower construction along the Jinsha River has altered downstream water temperatures, significantly impacting fish reproduction and growth. Utilizing surface water temperature monitoring data spanning from 2002 to 2022 at Xiangjiaba, Zhutuo, Yichang, and Datong hydrological stations, we compared the variations in water temperature downstream of the cascade reservoirs between construction period and operational period. Our findings reveal that: 1) During the two-stage joint operation of Xiangjiaba and Xiluodu hydropower stations, the annual minimum water temperature at Xiangjiaba hydrological station rose by 1.4 ℃, with the occurrence of the lowest water temperature delayed by 35 days compared to natural conditions. 2) Subsequent to the construction of Wudongde and Baihetan hydropower stations and the shift to four-stage joint operation, the lowest water temperatures at Xiangjiaba, Zhutuo, Yichang, and Datong hydrological stations increased by 2.0 ℃, 1.1 ℃, 0.8 ℃, and 0.7 ℃, respectively, compared to the two-stage operation period. Additionally, the occurrence of the lowest water temperature with four-stage operation was delayed by approximately 42 days, 29 days, 11 days, and 18 days, respectively. These results offer valuable scientific support for managing water temperatures in cascade reservoirs and safeguarding downstream eco-environments.
关键词
金沙江下游 /
梯级水电工程 /
水温 /
平坦化 /
延滞效应
Key words
downstream of Jinsha River /
cascade hydropower projects /
water temperature /
flattening effect /
delay effect
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郝好鑫, 杨 霞, 杨梦斐, 等. 金沙江下游梯级水库对水温及鱼类适宜产卵时间的影响[J]. 湖泊科学, 2023, 35(1): 247-257. (HAO Hao-xin, YANG Xia, YANG Meng-fei, et al. Impacts of the Cascade Reservoirs of Jinshajiang River on Water Temperature and Fish Spawning Time[J]. Journal of Lake Sciences, 2023, 35(1): 247-257.(in Chinese))
[2] 邹振华, 陆国宾, 李琼芳, 等. 长江干流大型水利工程对下游水温变化影响研究[J]. 水力发电学报, 2011, 30(5): 139-144. (ZOU Zhen-hua, LU Guo-bin, LI Qiong-fang, et al. Water Temperature Change Caused by Large-scale Water Projects on the Yangtze River Mainstream[J]. Journal of Hydroelectric Engineering, 2011, 30(5): 139-144.(in Chinese))
[3] 邱如健, 王远坤, 王 栋, 等. 三峡水库蓄水对宜昌—城陵矶河段水温情势影响研究[J]. 水利水电技术, 2020, 51(3): 108-115. (QIU Ru-jian, WANG Yuan-kun, WANG Dong, et al. Impacts of Three Gorges Reservoir on Water Temperature Regime between Yichang and Chengingji Reach[J]. Water Resources and Hydropower Engineering, 2020, 51(3): 108-115.(in Chinese))
[4] 李 雨, 邹 珊, 张国学, 等. 溪洛渡水库分层取水调度对下游河段水温结构的影响分析[J]. 水文, 2021, 41(3): 101-108. (LI Yu, ZOU Shan, ZHANG Guo-xue, et al. Analysis on the Influence of Layered Water Intake Operation on the Water Temperature Structure in the Lower Reaches of Xiluodu Reservoir[J]. Journal of China Hydrology, 2021, 41(3): 101-108.(in Chinese))
[5] 靖 争, 张爵宏, 曹慧群, 等. 水库水温研究进展及趋势[J]. 长江科学院院报, 2023, 40(2): 52-59, 66. (JING Zheng, ZHANG Jue-hong, CAO Hui-qun, et al. Research Progress and Trend of Reservoir Water Temperature[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 52-59, 66.(in Chinese))
[6] YANG X, TUO Y, YANG Y, et al. Study on the Effect of Front Retaining Walls on the Thermal Structure and Outflow Temperature of Reservoirs[J]. PLoS One, 2021, 16(12): e0260779.
[7] CHENG F,LI W,CASTELLO L,et al.Potential Effects of Dam Cascade on Fish: Lessons from the Yangtze River[J]. Reviews in Fish Biology and Fisheries, 2015, 25(3): 569-585.
[8] 刘兰芬, 陈凯麒, 张士杰, 等. 河流水电梯级开发水温累积影响研究[J]. 中国水利水电科学研究院学报, 2007, 5(3): 173-180. (LIU Lan-fen, CHEN Kai-qi, ZHANG Shi-jie, et al. Study on Cumulative Effects of Water Temperature by Cascade Hydropower Stations Built on Rivers[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(3): 173-180.(in Chinese))
[9] 黄 薇, 陈 进, 王 波. 梯级开发对河流径流过程和水温过程均化作用的研究[J]. 长江流域资源与环境, 2010, 19(3): 335-339. (HUANG Wei, CHEN Jin, WANG Bo. Study on Averaging Effect of Cascade Hydropower Development on Flow and Water Temperature Process[J]. Resources and Environment in the Yangtze Basin, 2010, 19(3): 335-339.(in Chinese))
[10]黄膺翰,严忠銮,卢晶莹,等.向家坝水电站下游水温变化分析[J].水力发电,2022,48(12):7-10,97.(HUANG Ying-han, YAN Zhong-luan, LU Jing-ying, et al. Analysis of Water Temperature Variation in the Downstream of Xiangjiaba Hydropower Station[J]. Water Power, 2022, 48(12): 7-10, 97.(in Chinese))
[11]李 雨, 刘秀林. 金沙江下游及川江段水温沿程监测成果分析[C]∥2020(第八届)中国水生态大会论文集. 郑州, 2020: 7-14.(LI Yu, LIU Xiu-lin. Analysis of Monitoring Results of Water Temperature along Lower Jinsha River and Chuanjiang Section[C]∥Proceedings of the Eighth China AquaTech 2020. Zhengzhou, 2020: 7-14. (in Chinese))
[12]任 实, 刘 亮, 张地继, 等. 溪洛渡-向家坝-三峡梯级水库水温分布特性[J]. 人民长江, 2018, 49(3): 32-35, 40. (REN Shi, LIU Liang, ZHANG Di-ji, et al. Research on Water Temperature Distribution in Xiluodu-Xiangjiaba-Three Gorges Cascade Reservoirs[J]. Yangtze River, 2018, 49(3): 32-35, 40.(in Chinese))
[13]骆辉煌, 李 倩, 李 翀. 金沙江下游梯级开发对长江上游保护区鱼类繁殖的水温影响[J]. 中国水利水电科学研究院学报, 2012, 10(4): 256-259, 266. (LUO Hui-huang, LI Qian, LI Chong. The Impact of Water Temperature during the Fish Reproduction in the Upper Yangtze River Due to the Cascade Development in the Lower Jinsha River[J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(4): 256-259, 266.(in Chinese))
[14]梁瑞峰, 邓 云, 脱友才, 等. 流域水电梯级开发水温累积影响特征分析[J]. 四川大学学报(工程科学版), 2012, 44(增刊2): 221-227. (LIANG Rui-feng, DENG Yun, TUO You-cai, et al. Analysis on the Cumulative Influence Characteristics of Water Temperature in Cascade Development of River Basins[J]. Advanced Engineering Sciences, 2012, 44(Supp.2): 221-227.(in Chinese))
[15]赵忠伟,谢长江,王静云,等.金沙江下游流域水温监测年报(2019年8月~2022年7月)[R].南京:河海大学,2022.(ZHAO Zhong-wei, XIE Chang-jiang, WANG Jing-yun, et al. Annual Report of Water Temperature Monitoring in Lower Jinsha River (2019-2022)[R]. Nanjing: Hohai University, 2022. (in Chinese))
[16]邹 珊, 李 雨, 陈金凤, 等. 长江攀枝花—宜昌江段水温时空变化规律[J]. 长江科学院院报, 2020, 37(8): 35-41, 48. (ZOU Shan, LI Yu, CHEN Jin-feng, et al. Temporal and Spatial Variation of Water Temperature in Panzhihua-Yichang Segment of Changjiang River[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 35-41, 48.(in Chinese))
[17]徐火清, 赵红红, 吴义军. 金沙江下游主要支流对干流水温的影响[J]. 水利水电科技进展, 2023, 43(1): 22-28. (XU Huo-qing, ZHAO Hong-hong, WU Yi-jun. Influence of Main Tributaries on Water Temperature of Main Stream in Lower Jinsha River[J]. Advances in Science and Technology of Water Resources, 2023, 43(1): 22-28.(in Chinese))
[18]夏 军, 陈 进, 佘敦先. 2022年长江流域极端干旱事件及其影响与对策[J]. 水利学报, 2022, 53(10): 1143-1153. (XIA Jun, CHEN Jin, SHE Dun-xian. Impacts and Countermeasures of Extreme Drought in the Yangtze River Basin in 2022[J]. Journal of Hydraulic Engineering, 2022, 53(10): 1143-1153.(in Chinese))
[19]史瑞华, 彭安修. 乌东德电站蓄水后三堆子站水流关系研究[J]. 三峡生态环境监测, 2023, 8(1): 50-56. (SHI Rui-hua, PENG An-xiu. Variation of Water Level-discharge Relationship in Sanduizi Hydrological Station after Impoundment of Wudongde Power Station[J]. Ecology and Environmental Monitoring of Three Gorges, 2023, 8(1): 50-56.(in Chinese))