基于高速摄像技术的流体作用力试验

周双, 张根广, 许晓阳

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 90-95.

PDF(861 KB)
PDF(861 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (8) : 90-95. DOI: 10.11988/ckyyb.20230301
水力学

基于高速摄像技术的流体作用力试验

作者信息 +

Experimental Investigation of Fluid Forces Using High-speed Imaging Technology

Author information +
文章历史 +

摘要

针对颗粒在动水中的流体作用力问题,采用高速摄像技术对颗粒的运动过程进行观测,通过求解圆球及天然泥沙跃移运动过程中的力学方程,得到拖曳力系数及上举力系数。试验结果表明:①动水中颗粒非匀速运动时的拖曳力系数、静水中颗粒非匀速运动时的拖曳力系数与匀速运动时的拖曳力系数均随着雷诺数的增加而减小,颗粒与水流之间的相对运动速度越接近于颗粒沉速,三者间的差异越小;当颗粒与水流之间的相对运动速度等于颗粒沉速时,三者近似相等。②形状对上举力系数的影响较对拖曳力系数的影响更明显,天然泥沙的拖曳力系数大于圆球的拖曳力系数,天然泥沙的上举力系数小于圆球的上举力系数。最后,构建了圆球及天然泥沙的拖曳力系数及上举力系数公式,公式计算值与实测值符合较好。

Abstract

Particle motion was observed using high-speed imaging technology to investigate the fluid forces acting on particles in flowing water. The drag coefficient and lift coefficient were obtained by solving the mechanical equations for saltating spheres and natural sediments. Experimental results manifest that: 1) The average drag coefficient for particles with nonuniform velocity in flowing water, particles with nonuniform velocity in stilling water, and particles with uniform velocity in stilling water all decrease with the increase of Reynolds number. The difference between these coefficients diminishes when the particle-fluid relative velocity approaches the settling velocity. When the relative velocity equals the settling velocity, the coefficients are approximately equal. 2) Shape has a greater influence on lift coefficient than on drag coefficient; natural sediments exhibit larger average drag coefficient compared to spheres, whereas spheres demonstrate higher average lift coefficient than natural sediments. The equations for drag coefficient and lift coefficient of spheres and natural sediments are established, and the calculated values agree well with measured data.

关键词

流体作用力 / 高速摄像技术 / 圆球 / 天然泥沙 / 跃移 / 拖曳力系数 / 上举力系数

Key words

fluid forces / high-speed imaging technology / sphere / natural sediment / saltation / drag coefficient / lift coefficient

引用本文

导出引用
周双, 张根广, 许晓阳. 基于高速摄像技术的流体作用力试验[J]. 长江科学院院报. 2024, 41(8): 90-95 https://doi.org/10.11988/ckyyb.20230301
ZHOU Shuang, ZHANG Gen-guang, XU Xiao-yang. Experimental Investigation of Fluid Forces Using High-speed Imaging Technology[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 90-95 https://doi.org/10.11988/ckyyb.20230301
中图分类号: TV142.2   

参考文献

[1]
SONG X, XU Z, LI G, et al. A New Model for Predicting Drag Coefficient and Settling Velocity of Spherical and Non-spherical Particle in Newtonian Fluid[J]. Powder Technology, 2017, 321: 242-250.
[2]
RIAZI A, TÜRKER U. The Drag Coefficient and Settling Velocity of Natural Sediment Particles[J]. Computational Particle Mechanics, 2019, 6(3): 427-437.
This article reports a study in which drag coefficient is defined more comprehensively. The coefficient is defined as a function of particle nominal diameter, gravitational acceleration, the ambient fluid kinematic viscosity, and the particle shape. This new definition is different from the conventional definitions proposed in the literature based on direct equations as a function of particle Reynolds number. The conventional definitions appear to be a simplification of drag coefficient and thus decreasing the accuracy of the estimations. Instead, the proposed equation in this article indicates that on average the drag coefficient estimation can be improved at least 3.77% compared to the proposed drag coefficient widely used in the literature. The improved drag coefficient was used to derive a more accurate settling velocity equation in which the effect of particle shape is directly incorporated in the settling velocity equation. Both equations were validated using well known datasets and accurate experiments from the literature as well as new experiments conducted for this purpose in the current research. The experiments cover a wide range of particle shape and a variety of specific gravity. The outcomes of the current study contribute to the use of settling velocity in river hydraulic applications proposing a simpler but more accurate procedure.
[3]
STOKES G G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums[J]. Transactions of the Cambridge Philosophical Society, 1851, 9: 8.
[4]
FLEMMER R L C, BANKS C L. On the Drag Coefficient of a Sphere[J]. Powder Technology, 1986, 48(3): 217-221.
[5]
CHENG N S. Comparison of Formulas for Drag Coefficient and Settling Velocity of Spherical Particles[J]. Powder Technology, 2009, 189(3): 395-398.
[6]
BARATI R, ALI AKBAR SALEHI NEYSHABOURI S, AHMADI G. Development of Empirical Models with High Accuracy for Estimation of Drag Coefficient of Flow around a Smooth Sphere: an Evolutionary Approach[J]. Powder Technology, 2014, 257: 11-19.
[7]
BETANCOURT F, CONCHA F, URIBE L. Settling Velocities of Particulate Systems Part 17. Settling Velocities of Individual Spherical Particles in Power-law Non-Newtonian Fluids[J]. International Journal of Mineral Processing, 2015, 143: 125-130.
[8]
UNNIKRISHNAN A, CHHABRA R P. An Experimental Study of Motion of Cylinders in Newtonian Fluids: Wall Effects and Drag Coefficient[J]. The Canadian Journal of Chemical Engineering, 1991, 69(3): 729-735.
[9]
TRAN-CONG S, GAY M, MICHAELIDES E E. Drag Coefficients of Irregularly Shaped Particles[J]. Powder Technology, 2004, 139(1): 21-32.
[10]
WANG X, ZHENG J, LI D, et al. Modification of the Einstein Bed-load Formula[J]. Journal of Hydraulic Engineering, 2008, 134(9): 1363-1369.
[11]
OSEEN C W. Neuere Methoden und Ergebnisse in der Hydrodynamik[J]. Monatsh. f. Mathematik und Physik, 1928, 35:67-68.
[12]
ELKHOLY M, CHAUDHRY M H. Drag and Added-mass Coefficients of Large Sandbags[J]. Journal of Hydraulic Engineering, 2011, 137(11): 1441-1451.
[13]
YOUNG J, LEEMING A. A Theory of Particle Deposition in Turbulent Pipe Flow[J]. Journal of Fluid Mechanics, 1997, 340: 129-159.
[14]
MAGNUS G. Ber die Abweichung der Geschlosse, und eine auffallende Erscheinung bei rotierenden Korpern[J], Poggendorfs Annalen der Physik und Chemie, 1853, 164(1):1-29.
[15]
RUBINOW S I, KELLER J B. The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid[J]. Journal of Fluid Mechanics, 1961, 11: 447-459.
[16]
DAVIES J M. The Aerodynamic of Golf Balls[J]. Journal of Applied Physics, 1949, 20: 821-828.
[17]
TSUJI Y, MORIKAWA Y, MIZUNO O. Experimental Measurement of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers[J]. Journal of Fluids Engineering, 1985, 107(4): 484-488.
[18]
OESTERLÉ B, DINH T B. Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers[J]. Experiments in Fluids, 1998, 25(1):16-22.
[19]
TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse Migration of Single Bubbles in Simple Shear Flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858.
[20]
LOTH E. Lift of a Spherical Particle Subject to Vorticity and/or Spin[J]. AIAA Journal, 2008, 46(4): 801-809.
[21]
SHI P, RZEHAK R. Lift Forces on Solid Spherical Particles in Unbounded Flows[J]. Chemical Engineering Science, 2019, 208: 115145.
[22]
陈家扬, 孙双科. 推移质跃移运动规律的实验研究[J]. 泥沙研究, 1992(4):69-76.
(CHEN Jia-yang, SUN Shuang-ke. Experimental Study on the Law of Bed Load Saltating Motion[J]. Journal of Sediment Research, 1992(4):69-76. (in Chinese))
[23]
胡春宏, 惠遇甲. 水流中颗粒跃移参数的试验研究[J]. 水动力学研究与进展(A辑), 1991(增刊1):71-81.
(HU Chun-hong, HUI Yu-jia. Experimental Study of Saltations of Solid Grains in Open Channel Flow[J]. Chinese Journal of Hydrodynamics, 1991(Supp.1):71-81. (in Chinese))
[24]
SCHULZ S F, WILDE R H, ALBERTSON M L. Influence of Shape on the Fall Velocity of Sedimentary Particles[R]. Colorado:Colorado Agricultural and Mechanical College, 1954:161-162.
[25]
DEY S, ALI S Z. Mechanics of Sediment Transport: Particle Scale of Entrainment to Continuum Scale of Bedload Flux[J]. Journal of Engineering Mechanics, 2017, 143(11): 0401727.
[26]
ZHOU S, ZHANG G G, WANG Y L, et al. Fluid Force on Moving Particles with Non-uniform Velocity[J]. Taiwan Water Conservancy, 2020, 68(2):78-87.
[27]
刘雪梅. 阻力相似理论的讨论[J]. 沈阳工业大学学报, 2001, 23(增刊1): 117-118.
(LIU Xue-mei. Discussion of Theory of Resistance Similarity[J]. Journal of Shenyang University of Technology, 2001, 23(Supp.1):117-118. (in Chinese))
[28]
刘亚晨. 列车气动阻力经验公式的相似理论推导[J]. 华东交通大学学报, 1997, 14(2):44-47.
(LIU Ya-chen. Similarity Theory Deduction of Train Aerodynamic Drag Experimental Formulas[J]. Journal of East China Jiaotong University, 1997, 14(2):44-47. (in Chinese))

基金

国家自然科学基金面上项目(51879227)
国家自然科学基金面上项目(51279170)
青海民族大学校级自然科学项目(23GCC20)

编辑: 黄玲
PDF(861 KB)

Accesses

Citation

Detail

段落导航
相关文章

/