水环境中泥沙颗粒与重金属污染物的微界面作用显著,泥沙颗粒表面形貌特征对污染物的吸附影响较大。通过单一吸附和竞争吸附试验、BET试验,分析了泥沙颗粒吸附铅、铜和镉后,泥沙颗粒孔隙的孔体积和比表面积的结构特征变化,并基于孔隙的孔体积统计方法,定量化铅、铜和镉在泥沙颗粒的竞争和独立吸附点位。结果表明,2~5 nm中孔的孔隙为主要的吸附部位。铅在泥沙颗粒所占据的竞争吸附点位较铜和镉多,为43.69%,铜和镉分别为30.77%、25.54%,铅、铜和镉占据泥沙颗粒的竞争吸附点位能力为铅>铜>镉。研究结果从纳米尺度揭示了吸附量与微观吸附点位的关系,可以为研究竞争吸附点位特征提供新思路。
Abstract
The micro-interfacial interactions between sediment particles and heavy metal pollutants in aquatic environment are significant, with the surface morphological characteristics of sediment particles greatly influencing pollutant adsorption. Through both singular adsorption and competitive adsorption experiments, alongside BET (Brunauer-Emmett-Teller) analysis, we investigated the changes in structural characteristics such as pore volume and specific surface area of sediment particles after adsorbing Pb, Cu, and Cd. Furthermore, utilizing pore volume statistical methods, we quantitatively differentiated between the competitive and individual adsorption sites of Pb, Cu, and Cd on sediment particles. The findings indicate that mesopores ranging from 2 to 5 nm predominantly facilitate adsorption. Pb occupies more competitive adsorption sites on sediment particles than Cu and Cd, accounting for 43.69%, with Cu and Cd occupying 30.77% and 25.54%, respectively. Thus, Pb has the largest capacity of occupying competitive adsorption sites on sediment particles, followed by Cu and Cd in descending order. These results unveil the relationship between adsorption capacity and micro-adsorption sites at the nanoscale, providing new insights into the characteristics of competitive adsorption sites.
关键词
泥沙颗粒 /
铅-铜-镉体系 /
BET实验 /
孔隙特征 /
竞争点位
Key words
sediment particle /
Pb-Cu-Cd system /
BET experiment /
pore characteristics /
competitive sites
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CRAWFORD S E, LOFTS S, LIBER K. The Role of Sediment Properties and Solution pH in the Adsorption of Uranium(VI) to Freshwater Sediments[J]. Environmental Pollution, 2017, 220: 873-881.
[2] 刘 叶, 汪存石, 吴绍凯, 等. 电场对高含水率淤泥中Cd2+迁移及去除的影响[J]. 长江科学院院报, 2023, 40(2): 60-66. (LIU Ye, WANG Cun-shi, WU Shao-kai, et al. Effects of Electric Field on Migration and Removal of Cd2+ in Sediment of High Moisture Content[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 60-66.(in Chinese))
[3] 金光球, 魏 杰, 张向洋, 等. 平原河流水沙界面生源物质迁移转化过程及水环境调控的研究进展[J]. 水科学进展, 2019, 30(3): 434-444. (JIN Guang-qiu, WEI Jie, ZHANG Xiang-yang, et al. Advances in Biogenic Elements Transport at the Interface of Stream-streambed and Water Environmental Control in the Plain River[J]. Advances in Water Science, 2019, 30(3): 434-444.(in Chinese))
[4] ISLAM S, AHMED K, RAKNUZZAMAN M, et al. Heavy Metal Pollution in Surface Water and Sediment: a Preliminary Assessment of an Urban River in a Developing Country[J]. Ecological Indicators, 2015, 48: 282-291.
[5] 韩 丁,黎 睿,汤显强,等.长江中下游江段泥沙对Pb2+的吸附特征[J].长江科学院院报,2020,37(5):15-22.(HAN Ding, LI Rui, TANG Xian-qiang, et al. Adsorption of Pb2+ on Sediments in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(5): 15-22.(in Chinese))
[6] 孙东坡, 李 彬, 童 彤, 等. 河流泥沙的环境效应分析[J]. 灌溉排水学报, 2010, 29(6): 51-55. (SUN Dong-po, LI Bin, TONG Tong, et al. Analysis on Environmental Effect of River Sediment[J]. Journal of Irrigation and Drainage, 2010, 29(6): 51-55.(in Chinese))
[7] 范成新, 刘 敏, 王圣瑞, 等. 近20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374. (FAN Cheng-xin, LIU Min, WANG Sheng-rui, et al. Research Progress and Prospect of Sediment Environment and Pollution Control in China in Recent 20 Years[J]. Advances in Earth Science, 2021, 36(4): 346-374.(in Chinese))
[8] HUANG L, JIN Q, TANDON P, et al. High-resolution Insight into the Competitive Adsorption of Heavy Metals on Natural Sediment by Site Energy Distribution[J]. Chemosphere, 2018, 197: 411-419.
[9] 黄 磊, 方红卫, 陈明洪. 泥沙颗粒表面电荷分布的初步研究[J]. 中国科学: 技术科学, 2012, 42(4): 395-401. (HUANG Lei, FANG Hong-wei, CHEN Ming-hong. Preliminary Study on Surface Charge Distribution of Sediment Particles[J]. Scientia Sinica (Technologica),2012, 42(4): 395-401.(in Chinese))
[10]李秀英, 陈志和, 孔 萌, 等. 水环境变化下泥沙颗粒的界面作用特征研究[J]. 中山大学学报(自然科学版), 2011, 50(4): 139-143. (LI Xiu-ying, CHEN Zhi-he, KONG Meng, et al. Study of Interfacial Interaction Properties of Sediment Particles with the Change in Water Environments[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(4): 139-143.(in Chinese))
[11]HASSAN M, LIU Y, NAIDU R, et al. Mesoporous Biopolymer Architecture Enhanced the Adsorption and Selectivity of Aqueous Heavy-metal Ions[J]. ACS Omega, 2021, 6(23): 15316-15331.
[12]IRANNAJAD M, KAMRAN HAGHIGHI H. Removal of Heavy Metals from Polluted Solutions by Zeolitic Adsorbents: a Review[J]. Environmental Processes, 2021, 8(1): 7-35.
[13]俞 伟, 赵思钰, 王宇航, 等. 苜蓿生物炭对磺胺甲恶唑的吸附机理研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 115-127. (YU Wei, ZHAO Si-yu, WANG Yu-hang, et al. Mechanism of Adsorption of Sulfamethoxazole by Alfalfa Biochar at Different Pyrolysis Temperatures[J]. Journal of Northwest University (Natural Science), 2022, 52(1): 115-127.(in Chinese))
[14]PARDO M T. Sorption of Lead, Copper, Zinc, and Cadmium by Soils: Effect of Nitriloacetic Acid on Metal Retention[J]. Communications in Soil Science and Plant Analysis, 2000, 31(1/2): 31-40.
[15]GUAN J, WANG J, WANG Z, et al. Comparison of Pb(II), Cu(II), Cd(II), and Ni(II) Adsorption Onto Surficial Sediment Components from Aquatic Environments in the Phaeozem Zone of Northeast China[J]. Journal of Geochemical Exploration, 2019, 197: 220-227.
[16]ZHU D, HE Y, ZHANG B, et al. Simultaneous Removal of Multiple Heavy Metals from Wastewater by Novel Plateau Laterite Ceramic in Batch and Fixed-bed Studies[J]. Journal of Environmental Chemical Engineering, 2021, 9: 105792.
[17]邱素芬,王立振,李晓杰,等.基于集合方法对铅镉在磁性生物炭上竞争吸附点位的研究[C]∥2018中国环境科学学会科学技术年会论文集(第三卷).合肥,2018:975-979.(QIU Su-fen,WANG Li-zhen,LI Xiao-jie,et al. Research on the Competitive Adsorption Sites of Lead and Cadmium on Magnetic Biochar Based on an Ensemble Approach[C]∥Proceedings of the 2018 Annual Conference of the Chinese Society for Environmental Sciences (Volume 3). Hefei, 2018: 975-979. (in Chinese))
[18]SERRANO S, GARRIDO F,CAMPBELL C G, et al. Competitive Sorption of Cadmium and Lead in Acid Soils of Central Spain[J]. Geoderma, 2005, 124(1/2): 91-104.
[19]薛 杨,许端平,韦 磊,等.基于集合方法铅镉在磁性蒙脱石上竞争吸附点位的计算[J].安全与环境学报,2020,20(4):1534-1542.(XUE Yang, XU Duan-ping, WEI Lei, et al. On Calculation of Competitive Adsorption Sites of Lead and Cadmium in Collection Approach at Magnetic Montmorillonite[J]. Journal of Safety and Environment, 2020, 20(4): 1534-1542.(in Chinese))
[20]GLEYZES C, TELLIER S, ASTRUC M. Fractionation Studies of Trace Elements in Contaminated Soils and Sediments: A Review of Sequential Extraction Procedures[J]. TrAC Trends in Analytical Chemistry, 2002, 21(6/7): 451-467.
[21]CHEN Z, ZENG B. Characteristics of Micro-interface Adsorption Kinetics between Sediments and Cu Ions[J]. International Journal of Sediment Research, 2017, 32(1): 82-89.
[22]陈志和. 泥沙吸附重金属铜离子后表面形貌及结构特征研究[D]. 北京: 清华大学, 2008. (CHEN Zhi-he. Research on Surface Morphology and Structure Characteristics of Sediment with Heavy Metal Copper Ions Adsorbed[D].Beijing: Tsinghua University, 2008. (in Chinese))
[23]钱 宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 2003. (QIAN Ning, WAN Zhao-hui. Dynamics of Sediment Movement[M]. Beijing: Science Press, 2003.(in Chinese))
[24]解 攀, 张 言, 王雪梅, 等. 改性锯末生物炭对水中As(Ⅲ)和Cd(Ⅱ)吸附机制的研究[J]. 应用化工, 2020, 49(2): 296-301, 307. (XIE Pan, ZHANG Yan, WANG Xue-mei, et al. Removal Characteristics of As(Ⅲ) and Cd(Ⅱ) from Aqueous Solution by Modified Sawdust-ash Biochar[J]. Applied Chemical Industry, 2020, 49(2): 296-301, 307.(in Chinese))