2012—2021年长江源区水沙变化特征调查分析

陈鹏, 金中武, 周银军, 汤柔馨, 冯志勇

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 180-185.

PDF(4534 KB)
PDF(4534 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 180-185. DOI: 10.11988/ckyyb.20221516
长江源科学考察与研究专栏

2012—2021年长江源区水沙变化特征调查分析

  • 陈鹏1, 金中武1, 周银军1, 汤柔馨2, 冯志勇3
作者信息 +

Characteristics of Water and Sediment Changes in the Source Region of Yangtze River from 2012 to 2021

  • CHEN Peng1, JIN Zhong-wu1, ZHOU Yin-jun1, TANG Rou-xin2, FENG Zhi-yong3
Author information +
文章历史 +

摘要

长江源区地处青藏高原,气候条件恶劣,受技术条件限制,有关江源地区河流径流输沙资料较少。为了探究江源地区河流径流输沙情况,基于2012—2021年间水文站实测资料和14个野外观测点数据,分析了长江源区河流水沙时空变化特征。结果表明:①长江源区径流量与降水量、温度显著相关,输沙量与径流量相关系数达0.842,与降水量相关系数为0.610;②受气温、降水等因素影响,长江源区河流径流输沙呈现明显的空间分布差异,其中2018年、2020年、2021年同期流量较大,含沙量则在2019年6月最大;③长江源区各考察点悬沙中值粒径总体呈现增大趋势,床沙中值粒径普遍较大,通天河干流、布曲、尕尔曲床沙中值粒径最大,各河段年际间变化规律不一致。研究成果可对无资料地区河流的径流输沙规律认识提供参考,为长江源区河流保护提供技术支撑。

Abstract

Located in the Qinghai-Tibet Plateau, the source region of Yangtze River is characterized by harsh climatic conditions, resulting in a lack of substantial runoff and sediment transport data in the region due to technological limitations. To address this issue, we looked into the temporal and spatial variations of water and sediment of rivers in the source region of Yangtze River based on data collected from hydrological stations and 14 field observation sites between 2012 and 2021. Findings indicate that: 1) Runoff in the source region of Yangtze River exhibits a significant correlation with precipitation and temperature. Sediment discharge is strongly correlated with runoff, with a correlation coefficient reaching 0.842, followed by a noteworthy correlation with precipitation, with a coefficient of 0.610. 2) Influenced by temperature, precipitation, and other factors, the runoff and sediment transport in rivers across the source region display evident spatial differences. On an interannual basis, larger flow rates occurred in 2018, 2020, and 2021, while smaller in 2019. Sediment concentration reached its peak in June 2019. 3) The median particle size of suspended sediment exhibits an overall increasing trend, and that of bed sediment tends to be large in general. Specifically, the mainstream of Tongtian River, Buqu River, and Gaerqu River showcases the largest median grain size of bed sediment. Yet the interannual variation patterns differ across various sections of the river. The research findings serve as a reference for understanding the runoff and sediment transport patterns in data-scarce areas, and also offer a technical support for the protection of the source region of Yangtze River.

关键词

长江源区 / 水沙变化 / 径流量 / 输沙量 / 分布差异

Key words

source region of Yangtze River / water and sediment change / runoff / sediment discharge / distribution difference

引用本文

导出引用
陈鹏, 金中武, 周银军, 汤柔馨, 冯志勇. 2012—2021年长江源区水沙变化特征调查分析[J]. 长江科学院院报. 2023, 40(10): 180-185 https://doi.org/10.11988/ckyyb.20221516
CHEN Peng, JIN Zhong-wu, ZHOU Yin-jun, TANG Rou-xin, FENG Zhi-yong. Characteristics of Water and Sediment Changes in the Source Region of Yangtze River from 2012 to 2021[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 180-185 https://doi.org/10.11988/ckyyb.20221516
中图分类号: TV211   

参考文献

[1] IMMERZEEL W W,VAN BEEK L P H,BIERKENS M F P. Climate Change Will Affect the Asian Water Towers[J]. Science, 2010, 328(5984) : 1382-1385.
[2] 王根绪, 李元寿, 王一博, 等. 长江源区高寒生态与气候变化对河流径流过程的影响分析[J]. 冰川冻土, 2007, 29(2): 159-168.
[3] 孙广友, 唐邦兴. 长江河源区自然环境研究[M]. 北京: 科学出版社, 1995: 1-98.
[4] 陈 婷. 长江源区生态水文学研究[D]. 北京: 中国地质大学(北京), 2009.
[5] 闫 霞, 周银军, 姚仕明. 长江源区河流地貌及水沙特性[J]. 长江科学院院报, 2019, 36(12): 10-15.
[6] 韩 丽, 宋克超, 张文江, 等. 长江源头流域水文要素时空变化及对气候因子的响应[J]. 山地学报, 2017, 35(2): 129-141.
[7] 蒋 冲, 李 芬, 高艳妮, 等. 1956—2012年三江源区河流流量变化及成因[J]. 环境科学研究, 2017, 30(1): 30-39.
[8] 刘希胜. 青海省三江源区主要河流泥沙特征分析[J]. 安徽农业科学, 2014, 42(26): 9091-9093, 9106.
[9] 徐 平, 李其江, 黄 茁. 长江和澜沧江源区生态环境综合科学考察: 2012-2016[M]. 北京: 科学出版社, 2018.
[10] 曹建廷, 秦大河, 罗 勇, 等. 长江源区1956—2000年径流量变化分析[J]. 水科学进展, 2007, 18(1): 29-33.

PDF(4534 KB)

Accesses

Citation

Detail

段落导航
相关文章

/