秦岭北麓是黄河重要的水源涵养区,分析其水文地球化学特征及演化模式对于加强秦岭地下水资源的开发与保护、推进关中平原乃至黄河流域生态保护与高质量发展具有重要意义。利用2019—2021年在渭河流域开展水文地质调查所获取的资料,运用数理统计、水文地球化学反向模拟等方法,分析了秦岭至渭河河谷地下水的水文地球化学演化规律及模式。结果表明:由基岩区至细土平原区,地下水水化学类型由HCO3-Ca型向HCO3·SO4-Ca·Na型转变,溶解性固体总量(TDS)浓度由254 mg/L增至889 mg/L,分带性不强;随着地下水流动,水-岩作用主要由碳酸盐岩风化溶滤控制向硅酸盐岩与岩盐风化溶滤控制转变,同时阳离子交换作用增强;14C测年显示研究区地下水年龄多在2 450 a以内,地下水循环更新快,蒸发浓缩作用不显著;山前洪积扇作为地下水重要的涵养区与径流通道,对于关中平原潜水和承压水水质保障有关键作用,由于洪积扇含水层防污性能差,在地下水开发利用和工农业活动中要加强地下水资源的保护。
Abstract
The northern foothills of the Qinling Mountains constitute a vital water source conservation area for the Yellow River. Examining the hydrogeochemical evolution patterns and models in this region holds paramount importance for the development and preservation of groundwater resources in the Qinling Mountains, and also helps advancing ecological protection and facilitating the high-quality development of the Guanzhong Plain and the broader Yellow River Basin. Utilizing data collected during the hydrogeological survey in the Weihe River Basin spanning 2019 to 2021, this study delves into the hydrogeochemical evolution patterns and models of groundwater from the Qinling to the Weihe River Valley. Employing multivariate statistics, and hydrogeochemical reverse simulation methods, the analysis reveals a shift from HCO3-Ca to HCO3·SO4-Ca·Na in the hydrochemical composition of groundwater from the rocky substrate to the fine soil plain, with subtle zoning observed, accompanied by a rise in Total Dissolved Solids (TDS) concentration from 254 mg/L to 889 mg/L. The flow of groundwater indicates a shift in water-rock interaction dominance, transitioning from the weathering and leaching of carbonate rock to that of silicate rock and rock salt. Concurrently, cation exchange intensifies. Despite the rapid circulation and replenishment of groundwater, evaporation and concentration remain relatively insignificant. Groundwater age, as measured by 14C, predominantly falls within the range of 2 450 years. As a critical groundwater conservation area and runoff channel, the Qinling piedmont proluvial fan stays as a pivotal player in safeguarding the quality of both unconfined and confined water in the Guanzhong Plain. Due to the proluvial fan's limited resistance to pollution, it is imperative to bolster the protection of groundwater resources amidst ongoing groundwater development, industrial activities, and agricultural practices.
关键词
地下水保护 /
秦岭北麓 /
水文地球化学 /
溶解性固体总量(TDS) /
离子比 /
演化规律
Key words
groundwater protection /
northern piedmont of Qinling mountains /
hydro-geochemistry /
total dissolved solids (TDS) /
ion ratio /
evolution law
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李君轶, 傅伯杰, 孙九林, 等. 新时期秦岭生态文明建设:存在问题与发展路径[J]. 自然资源学报, 2021, 36(10): 2449-2463. (LI Jun-yi, FU Bo-jie, SUN Jiu-lin, et al. Ecological Civilization Construction at Qinling Mountains in the New Era[J]. Journal of Natural Resources, 2021, 36(10): 2449-2463.(in Chinese))
[2] 冯国平, 高宗军, 蔡五田, 等. 豫北山前修武地区地下水水化学特征及水质评价[J]. 长江科学院院报, 2021, 38(1): 27-34. (FENG Guo-ping, GAO Zong-jun, CAI Wu-tian, et al. Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Xiuwu Area of North Henan Province[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(1): 27-34.(in Chinese))
[3] YIDANA S M, BAWOYOBIE P, SAKYI P, et al. Evolutionary Analysis of Groundwater Flow: Application of Multivariate Statistical Analysis to Hydrochemical Data in the Densu Basin, Ghana[J]. Journal of African Earth Sciences, 2018, 138: 167-176.
[4] 刘 影,王中美,杨秀丽,等.贵安新区东部岩溶地下水水化学特征[J].长江科学院院报,2022,39(1):39-46.(LIU Ying, WANG Zhong-mei, YANG Xiu-li, et al. Hydrochemical Characteristics of Karst Groundwater in the East of Gui'an, Guiyang[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 39-46.(in Chinese))
[5] 王文祥,李文鹏,蔡月梅,等.黑河流域中游盆地水文地球化学演化规律研究[J].地学前缘,2021,28(4):184-193.(WANG Wen-xiang,LI Wen-peng,CAI Yue-mei,et al. The Hydrogeochemical Evolution of Groundwater in the Middle Reaches of the Heihe River Basin[J]. Earth Science Frontiers, 2021, 28(4): 184-193.(in Chinese))
[6] MIRZAVAND M, GHASEMIEH H, JAVAD SADATINEJAD S, et al. Delineating the Source and Mechanism of Groundwater Salinization in Crucial Declining Aquifer Using Multi-chemo-isotopes Approaches[J]. Journal of Hydrology, 2020, 586: 124877.
[7] WANG H, JIANG X W, WAN L, et al. Hydrogeochemical Characterization of Groundwater Flow Systems in the Discharge Area of a River Basin[J]. Journal of Hydrology, 2015, 527: 433-441.
[8] 孙一博,王文科,段 磊,等.关中盆地浅层地下水地球化学的形成演化机制[J].水文地质工程地质,2014,41(3):29-35.(SUN Yi-bo, WANG Wen-ke, DUAN Lei, et al. Geochemical Evolution Mechanisms of Shallow Groundwater in Guanzhong Basin, China[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 29-35.(in Chinese))
[9] 刘 鑫, 向 伟, 司炳成. 渭河和泾河流域浅层地下水水化学特征和控制因素[J]. 环境科学, 2021, 42(6): 2817-2825. (LIU Xin, XIANG Wei, SI Bing-cheng. Hydrochemistry and Its Controlling Factors and Water Quality Assessment of Shallow Groundwater in the Weihe and Jinghe River Catchments[J]. Environmental Science, 2021, 42(6): 2817-2825.(in Chinese))
[10] ZHANG Q, QIAN H, XU P, et al. Groundwater Quality Assessment Using a New Integrated-weight Water Quality Index (IWQI) and Driver Analysis in the Jiaokou Irrigation District, China[J]. Ecotoxicology and Environmental Safety, 2021, 212: 111992.
[11] 段 磊, 王文科, 孙亚乔, 等. 关中盆地浅层地下水氮污染的健康风险评价[J]. 水文地质工程地质, 2011, 38(3): 92-97. (DUAN Lei, WANG Wen-ke, SUN Ya-qiao, et al. Health Risk Assessment of “Three Nitrogen” in Shallow Groundwater in the Guanzhong Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 92-97.(in Chinese))
[12] 高晶波.秦岭北麓土地利用方式变化对土壤氮素累积及损失的影响[D].杨凌:西北农林科技大学,2020:47-52.(GAO Jing-bo.Impact of Land Use Change on soil Nitrogen Accumulation and Loss in the Northern Slope Region of Qinling Mountains[D]. Yangling: Northwest Agriculture and Forestry University,2020:47-52. (in Chinese))
[13] 范亚宁, 刘 康, 陈姗姗, 等. 秦岭北麓陆地生态系统水源涵养功能的空间格局[J]. 水土保持通报, 2017, 37(2): 50-56. (FAN Ya-ning, LIU Kang, CHEN Shan-shan, et al. Spatial Pattern Analysis on Water Conservative Functionality of Land Ecosystem in Northern Slope of Qinling Mountains[J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 50-56.(in Chinese))
[14] 胡德秀, 李 立, 张 艳, 等. 渭河干流陕西段综合治理前后的水质变化与趋势[J]. 水土保持通报, 2018, 38(5): 91-96. (HU De-xiu, LI Li, ZHANG Yan, et al. Water Quality Change before and after Comprehensive Treatment in Shaanxi Section of Weihe Main Stream[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 91-96.(in Chinese))
[15] CRAIG H. Isotopic Variations in Meteoric Waters[J]. Science, 1961, 133(3465): 1702-1703.
[16] 赵明华, 陆彦玮, Rachana Heng, 等. 关中平原降水氢氧稳定同位素特征及其水汽来源[J]. 环境科学, 2020, 41(7): 3148-3156. (ZHAO Ming-hua, LU Yan-wei, HENG R, et al. Analysis of Hydrogen and Oxygen Stable Isotope Characteristics and Vapor Sources of Precipitation in the Guanzhong Plain[J]. Environmental Science, 2020, 41(7): 3148-3156.(in Chinese))
[17] 王 鹏, 刘 拓, 赵 禹, 等. 陕西渭河中下游流域黏土矿物分布特征分析[J]. 西北地质, 2019, 52(3): 70-80. (WANG Peng, LIU Tuo, ZHAO Yu, et al. Analysis on the Distribution Characteristics of Clay Minerals in the Middle and Lower Reaches of Weihe River in Shaanxi Province[J]. Northwestern Geology, 2019, 52(3): 70-80.(in Chinese))
[18] GAILLARDET J,DUPR'E B, LOUVAT P,et al.Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers[J].Chemical Geology, 1999, 159(1/2/3/4): 3-30.
[19] 沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.(SHEN Zhao-li, ZHU Wan-hua, ZHONG Zuo-shen. Hydrogeochemical Basis[M]. Beijing: Geological Publishing House, 1993.(in Chinese))
[20] SCHOELLER H. Qualitative Evaluationof Groundwater Resource: Methods and Techniques of Groundwater Investigation and Development[J]. Water Research, 1967, 33: 44-52.
[21] 王 攀, 靳孟贵, 路东臣. 河南省永城市浅层地下水化学特征及形成机制[J]. 地球科学, 2020, 45(6): 2232-2244. (WANG Pan, JIN Meng-gui, LU Dong-chen. Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province[J]. Earth Science, 2020, 45(6): 2232-2244.(in Chinese))
[22] 刘瑞平, 徐友宁, 亢文婷. 基于phreeqci和netpath联合反演水文地球化学过程: 以小秦岭太峪水库为例[J]. 西北地质, 2019, 52(1): 239-243. (LIU Rui-ping, XU You-ning, KANG Wen-ting. Based on Phreeqci and Netpath Joint Inversion Hydrology Geochemistry Process: Example from the Xiaoqinling Tianyu Reservoir[J]. Northwestern Geology, 2019, 52(1): 239-243.(in Chinese))
基金
中国地质调查局地质调查项目(DD20221754,DD20190333)