为探讨单侧滩地植被对弯曲主槽二次流特性的影响,概化设计了无滩地植被与有单侧滩地植被的弯曲河道模型,利用声学多普勒流速仪(ADV)测得其主槽特征断面的瞬时流速。试验结果显示:在单式弯道中,主涡的形成完全由弯道离心力决定;但在试验复式弯道中,主涡的形成与滩槽水流交换密切相关。当相对水深为0.15时,与无滩地植被工况相比,在滩地植被横向宽度较小的弯顶附近和直线过渡段,二次流强度出现了较大衰减,但在滩地植被横向宽度较大的弯顶附近,二次流强度无明显差别。当相对水深增至0.35时,两种滩地条件下弯曲主槽各断面的二次流强度均有所增强,但单侧滩地植被条件下各断面的二次流强度均小于无滩地植被条件下的对应值。在有单侧滩地植被条件下,对于同一相对水深,上游滩地无植被的直线过渡段,二次流强度明显大于上游滩地覆有植被的直线过渡段的情况。在无滩地植被条件下,雷诺应力Rvw等值线的“岛心”位置可以标示二次流主涡的旋转中心,而“岛心”处雷诺应力Rvw的正负可以表征二次流主涡的旋转方向。在有单侧滩地植被条件下,断面中部的雷诺应力Rvw等值线分布十分凌乱,并无上述规律,且其绝对值明显小于无滩地植被条件的对应值。
Abstract
To investigate the impact of one-sided floodplain vegetation on secondary flow in meandering channel, we designed meandering compound channels with smooth floodplains and one-sided vegetated floodplains in a generalized manner, and measured the cross-sectional instantaneous velocities using an Acoustic Doppler Velocimeter (ADV). The experimental results revealed that the formation of main vortexes in a single bend is solely influenced by centrifugal force, whereas the formation of main vortexes in the experimental meandering compound channel is closely associated with flow exchange between the floodplains and the main channel. When the relative water depth is 0.15, compared to the situation under smooth floodplain conditions, the secondary flow intensities at the apex sections with the narrowest vegetated floodplain and in crossover areas exhibit larger attenuation, but there is no apparent difference for the secondary flow intensity at apex section with the widest vegetated floodplain. For the relative depth of 0.35, the secondary flow intensity at each cross section in the meandering channel is enhanced, with the secondary flow intensity under one-sided vegetated floodplain conditions being smaller than the corresponding value under smooth floodplain conditions. In the case of one-sided vegetated floodplain conditions and the same relative depth, the secondary flow intensities in the crossover areas with a smooth upstream floodplain are notably larger than the corresponding values in crossover areas with a vegetated upstream floodplain. Under the smooth floodplain conditions, the “island center” of the cross-sectional contours of Reynolds stress Rvw can indicate the rotational center of the main vortex. The positive or negative sign of the Reynolds stress Rvw at the “island center” can reflect the rotational direction of the main vortex. Conversely, under the one-sided vegetated floodplain conditions, the Rvw contours in the cross-sectional middle parts appear disordered and do not demonstrate the aforementioned characteristics, with the absolute values of Reynolds stress Rvw being noticeably smaller than the corresponding values under smooth floodplain conditions.
关键词
弯曲复式河道 /
单侧滩地植被 /
二次流 /
相对强度 /
旋度
Key words
meandering compound channel /
one-sided floodplain vegetation /
secondary flow /
relative intensity /
curl
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHIONO K,MUTO Y.Complex Flow Mechanisms in Compound Meandering Channels with Overbank Flow[J]. Journal of Fluid Mechanics, 1998, 376: 221-261.
[2] SHIONO K, MUTO Y, KNIGHT D W, et al. Energy Losses Due to Secondary Flow and Turbulence in Meandering Channels with Overbank Flows[J]. Journal of Hydraulic Research, 1999, 37(5): 641-664.
[3] BLANCKAERT K, GRAF W H. Mean Flow and Turbulence in Open-channel Bend[J]. Journal of Hydraulic Engineering, 2001, 127(10): 835-847.
[4] MORVAN H, PENDER G, WRIGHT N G, et al. Three-dimensional Hydrodynamics of Meandering Compound Channels[J]. Journal of Hydraulic Engineering, 2002, 128(7): 674-682.
[5] JING H, LI C, GUO Y, et al. Numerical Simulation of Turbulent Flows in Trapezoidal Meandering Compound Open Channels[J]. International Journal for Numerical Methods in Fluids, 2011, 65(9): 1071-1083.
[6] BLANCKAERT K. Saturation of Curvature-induced Secondary Flow, Energy Losses, and Turbulence in Sharp Open-channel Bends: Laboratory Experiments, Analysis, and Modeling[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3): 1-23.
[7] ABHARI M N, GHODSIAN M, VAGHEFI M, et al. Experimental and Numerical Simulation of Flow in a 90°bend[J]. Flow Measurement and Instrumentation, 2010, 21(3): 292-298.
[8] SOMSOOK K, DUKA M A, OLAP N A, et al. Direct Measurement of Secondary Circulation in a Meandering Macrotidal Estuary[J]. Science of the Total Environment, 2020, 739: 139503.
[9] PAN Y, LIU X, YANG K. Effects of Discharge on the Velocity Distribution and Riverbed Evolution in a Meandering Channel[J]. Journal of Hydrology, 2022, 607: 127539.
[10] 刘 超,杨克君,刘兴年,等.植被作用下的弯曲复式河槽漫滩水流2维解析解[J].四川大学学报(工程科学版),2012,44(6):7-12.(LIU Chao,YANG Ke-jun,LIU Xing-nian,et al. Analytical Models for Overbank Flows in Meandering Channels with Vegetated Floodplains[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 7-12.(in Chinese))
[11] 张 翼,夏军强,宗全利,等.下荆江二元结构河岸崩退过程模拟及影响因素分析[J].泥沙研究,2015(3): 27-34.(ZHANG Yi,XIA Jun-qiang,ZONG Quan-li,et al. Modeling of the Failure Process of a Composite Riverbank and Influencing Factors Analysis in the Lower Jingjiang Reach[J]. Journal of Sediment Research,2015(3):27-34.(in Chinese))
[12] 黄 胜, 刘 超, 刘兴年. 滩地植被对弯曲漫滩河道主槽二次流发展的影响研究[J]. 工程科学与技术, 2019, 51(1): 158-164.(HUANG Sheng, LIU Chao, LIU Xing-nian. Influence of Floodplains Vegetation on the Secondary Current Cell in the Meandering Main Channel with Overbank Flows[J]. Advanced Engineering Sciences, 2019, 51(1): 158-164.(in Chinese))
[13] 曹玉芬,白玉川,高术仙.连续弯道水槽水流结构与床面形态试验研究[J].天津大学学报(自然科学与工程技术版),2020,53(12):1226-1235.(CAO Yu-fen,BAI Yu-chuan,GAO Shu-xian.Experimental Study of Flow Structure and Bed Topography in Continuous Curve Flume[J]. Journal of Tianjin University (Science and Technology),2020,53(12):1226-1235.(in Chinese))
[14] 杨 彧, 林颖典. 浸没式人工刚性植被群分布对弯道水流特性的影响[J]. 水动力学研究与进展(A辑), 2021, 36(1): 85-94.(YANG Yu, LIN Ying-dian. Effect of Submerged and Rigid Artificial Vegetation Distributions on Curved Channel Flow[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 85-94.(in Chinese))
基金
国家自然科学基金项目(52309104, 51539007, 51979181, 51279117)