长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3): 79-87.DOI: 10.11988/ckyyb.20221309

• 岩土工程 • 上一篇    下一篇

小断面土石组合地质条件下TBM施工围岩可掘性分级识别

杨耀红1,2, 刘德福1, 张智晓3, 韩兴忠1, 孙小虎1,4   

  1. 1.华北水利水电大学 水利学院,郑州 450046;
    2.河南省黄河流域水资源节约集约利用重点实验室,郑州 450046;
    3.中州水务控股有限公司, 郑州 450000;
    4.中水北方勘测设计研究有限责任公司,天津 300000
  • 收稿日期:2022-10-08 修回日期:2023-01-06 出版日期:2024-03-01 发布日期:2024-03-05
  • 通讯作者: 刘德福(1996-),男,河南新乡人,硕士研究生,从事TBM、隧道工程方面的研究。E-mail:740213955@qq.com
  • 作者简介:杨耀红(1969-),男,河南舞阳人,教授,博士,博士生导师,从事工程管理、资源环境管理方面的研究。E-mail:yangyaohong@ncwu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(51679089);河南省学科创新引智基地项目“智慧水利”(GXJD004)

Classification and Predictive Research on Excavability of Surrounding Rock for TBM Construction in Small Section with Soil-Rock Composite Geological Condition

YANG Yao-hong1,2, LIU De-fu1, ZHANG Zhi-xiao3, HAN Xing-zhong1, SUN Xiao-hu1,4   

  1. 1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
    2. Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China;
    3. Zhongzhou Water Affairs Holding Co., Ltd., Zhengzhou 450000, China;
    4. Bei Fang Investigation Design & Research Co., Ltd., Tianjin 300000, China
  • Received:2022-10-08 Revised:2023-01-06 Online:2024-03-01 Published:2024-03-05

摘要: 围岩可掘性分级以及识别研究对隧道掘进机(TBM)高效率施工及智能化控制意义重大。依托南水北调安阳市西部调水工程TBM施工实际数据,利用掘进性能综合指标单位贯入度推力(FPI)、单位贯入度扭矩(TPI)建立了小断面土石组合地质条件下TBM施工围岩可掘性分级标准;提出了PCA-RF模型对围岩可掘性分级进行识别,并与BP、SVR和RF模型进行了比较讨论。结果表明:①建立的小断面土石组合围岩TBM施工可掘性分级标准是适用的,克服了土石组合围岩下传统围岩分类方法的局限性;②小断面土石组合围岩TBM施工可掘性分级PCA-RF识别模型的识别准确率达到了98.3%,高于BP、SVR和RF模型,可以满足工程施工需要。

关键词: 隧道掘进机(TBM), 小断面, 土石组合, 可掘性分级, PCA-RF模型

Abstract: The efficient construction and intelligent control of TBM heavily rely on the classification and real-time identification of surrounding rock excavability. To address this, we establish a classification standard for surrounding rock excavability in TBM construction under geological conditions characterized by small sections and soil-rock combinations based on actual data (penetration thrust and torque per unit penetration) from the Anyang Western Water Diversion Project. Moreover, we introduce the PCA-RF model for real-time identification and prediction of surrounding rock excavability, and then compared the results with those of BP, SVR, and RF models. Our research yields the following conclusions: 1) The classification standard for surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations proves to be applicable. This standard resolves the limitations of traditional methods for classifying surrounding rock in soil-rock composite environments. 2) The PCA-RF model demonstrates an identification and prediction accuracy of 98.3% for the surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations. This accuracy surpasses that of the BP, SVR, and RF models and fulfills the demands of engineering construction.

Key words: tunnel boring machine (TBM), small section, soil-rock combination, classification of excavability, PCA-RF model

中图分类号: