小断面土石组合地质条件下TBM施工围岩可掘性分级识别

杨耀红, 刘德福, 张智晓, 韩兴忠, 孙小虎

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3) : 79-87.

PDF(6755 KB)
PDF(6755 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3) : 79-87. DOI: 10.11988/ckyyb.20221309
岩土工程

小断面土石组合地质条件下TBM施工围岩可掘性分级识别

  • 杨耀红1,2, 刘德福1, 张智晓3, 韩兴忠1, 孙小虎1,4
作者信息 +

Classification and Predictive Research on Excavability of Surrounding Rock for TBM Construction in Small Section with Soil-Rock Composite Geological Condition

  • YANG Yao-hong1,2, LIU De-fu1, ZHANG Zhi-xiao3, HAN Xing-zhong1, SUN Xiao-hu1,4
Author information +
文章历史 +

摘要

围岩可掘性分级以及识别研究对隧道掘进机(TBM)高效率施工及智能化控制意义重大。依托南水北调安阳市西部调水工程TBM施工实际数据,利用掘进性能综合指标单位贯入度推力(FPI)、单位贯入度扭矩(TPI)建立了小断面土石组合地质条件下TBM施工围岩可掘性分级标准;提出了PCA-RF模型对围岩可掘性分级进行识别,并与BP、SVR和RF模型进行了比较讨论。结果表明:①建立的小断面土石组合围岩TBM施工可掘性分级标准是适用的,克服了土石组合围岩下传统围岩分类方法的局限性;②小断面土石组合围岩TBM施工可掘性分级PCA-RF识别模型的识别准确率达到了98.3%,高于BP、SVR和RF模型,可以满足工程施工需要。

Abstract

The efficient construction and intelligent control of TBM heavily rely on the classification and real-time identification of surrounding rock excavability. To address this, we establish a classification standard for surrounding rock excavability in TBM construction under geological conditions characterized by small sections and soil-rock combinations based on actual data (penetration thrust and torque per unit penetration) from the Anyang Western Water Diversion Project. Moreover, we introduce the PCA-RF model for real-time identification and prediction of surrounding rock excavability, and then compared the results with those of BP, SVR, and RF models. Our research yields the following conclusions: 1) The classification standard for surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations proves to be applicable. This standard resolves the limitations of traditional methods for classifying surrounding rock in soil-rock composite environments. 2) The PCA-RF model demonstrates an identification and prediction accuracy of 98.3% for the surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations. This accuracy surpasses that of the BP, SVR, and RF models and fulfills the demands of engineering construction.

关键词

隧道掘进机(TBM) / 小断面 / 土石组合 / 可掘性分级 / PCA-RF模型

Key words

tunnel boring machine (TBM) / small section / soil-rock combination / classification of excavability / PCA-RF model

引用本文

导出引用
杨耀红, 刘德福, 张智晓, 韩兴忠, 孙小虎. 小断面土石组合地质条件下TBM施工围岩可掘性分级识别[J]. 长江科学院院报. 2024, 41(3): 79-87 https://doi.org/10.11988/ckyyb.20221309
YANG Yao-hong, LIU De-fu, ZHANG Zhi-xiao, HAN Xing-zhong, SUN Xiao-hu. Classification and Predictive Research on Excavability of Surrounding Rock for TBM Construction in Small Section with Soil-Rock Composite Geological Condition[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(3): 79-87 https://doi.org/10.11988/ckyyb.20221309
中图分类号: U452.12   

参考文献

[1] 刘新荣, 涂义亮, 王 鹏, 等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434.(LIU Xin-rong, TU Yi-liang, WANG Peng, et al. Particle Breakage of Soil-rock Aggregate Based on Large-scale Direct Shear Tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434.(in Chinese))
[2] 何发亮, 谷明成, 王石春. TBM施工隧道围岩分级方法研究[J]. 岩石力学与工程学报, 2002, 21(9): 1350-1354.(HE Fa-liang, GU Ming-cheng, WANG Shi-chun. Study on Surrounding Rockmass Classification of Tunnel Cut by TBM[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1350-1354.(in Chinese))
[3] 张 宁, 石豫川, 童建刚. TBM施工深埋隧洞围岩分类方法初探[J]. 现代隧道技术, 2010, 47(5): 11-14, 31.(ZHANG Ning, SHI Yu-chuan, TONG Jian-gang. Discussion on Rock Classification of TBM Excavated Deep Tunnels[J]. Modern Tunnelling Technology, 2010, 47(5): 11-14, 31.(in Chinese))
[4] 闫长斌, 路新景. 基于改进的距离判别分析法的南水北调西线工程TBM施工围岩分级[J]. 岩石力学与工程学报, 2012, 31(7): 1446-1451.(YAN Chang-bin, LU Xin-jing. Classification of Surrounding Rock Mass by TBM Tunneling Based on Improved Distance Discriminant Analysis Method in West Route of South-to-North Water Transfer Project[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1446-1451.(in Chinese))
[5] 李春明,彭耀荣.TBM施工隧洞围岩分类方法的探讨[J].中外公路,2006,26(3):235-237.(LI Chun-ming,PENG Yao-rong.Discussion on Classification Method of Surrounding Rock of TBM Construction Tunnel[J]. Journal of China & Foreign Highway,2006,26(3):235-237.(in Chinese))
[6] 王 攀, 郭 伟, 朱殿华. 基于模糊聚类理论的TBM施工围岩可掘进性分级预测模型[J]. 现代隧道技术, 2014, 51(6): 58-65.(WANG Pan, GUO Wei, ZHU Dian-hua. Fuzzy Clustering Theory Based Rock Mass Cuttability Classification Prediction Model for TBM Tunnelling[J]. Modern Tunnelling Technology, 2014, 51(6): 58-65.(in Chinese))
[7] ERHARTER G H, MARCHER T, REINHOLD C. Application of Artificial Neural Networks for Underground Construction-Chances and Challenges-Insights from the BBT Exploratory Tunnel Ahrental Pfons[J]. Geomechanics and Tunnelling, 2019, 12(5): 472-477.
[8] 吴志军, 方立群, 翁 磊, 等. 基于TBM掘进性能的岩体分级及可掘性等级感知识别方法[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2684-2699.(WU Zhi-jun, FANG Li-qun, WENG Lei, et al. Perception and Identification Method of Rock Mass Classification and Drivability Grade Based on TBM Tunneling Performance[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Supp.1): 2684-2699.(in Chinese))
[9] 吴鑫林, 张晓平, 刘泉声, 等. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729, 1739.(WU Xin-lin, ZHANG Xiao-ping, LIU Quan-sheng, et al. Prediction and Classification of Rock Mass Boreability in TBM Tunnel[J]. Rock and Soil Mechanics, 2020, 41(5): 1721-1729, 1739.(in Chinese))
[10] 李宏波. 基于掘进参量反演的TBM围岩等级预测识别方法研究[J]. 隧道建设(中英文), 2022, 42(1): 75-82.(LI Hong-bo. Prediction and Identification Method of Tunnel Boring Machine Surrounding Rock Grade Based on Tunneling Parameters Inversion[J]. Tunnel Construction, 2022, 42(1): 75-82.(in Chinese))
[11] YANG Z, HE B, LIU Y, et al. Classification of Rock Fragments Produced by Tunnel Boring Machine Using Convolutional Neural Networks[J]. Automation in Construction, 2021, 125: 103612.
[12] HOU S K, LIU Y R, YANG Q. Real-time Prediction of Rock Mass Classification Based on TBM Operation Big Data and Stacking Technique of Ensemble Learning[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(1): 123-143.
[13] 毛奕喆, 龚国芳, 周星海, 等. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454, 547.(MAO Yi-zhe, GONG Guo-fang, ZHOU Xing-hai, et al. Identification of TBM Surrounding Rock Based on Markov Process and Deep Neural Network[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(3): 448-454, 547.(in Chinese))
[14] 段志伟,杜立杰,吕海明,等.基于主成分分析与BP神经网络的TBM围岩可掘性分级实时识别方法研究[J]. 隧道建设(中英文),2020,40(3):379-388.(DUAN Zhi-wei,DU Li-jie,LYU Hai-ming,et al.Real-time Identification Method of TBM Surrounding Rock Excavatability Grade Based on Principal Component Analysis and BP Neural Network[J]. Tunnel Construction,2020,40(3):379-388.(in Chinese))
[15] 杜立杰,齐志冲,韩小亮,等.基于现场数据的TBM可掘性和掘进性能预测方法[J].煤炭学报,2015,40(6):1284-1289.(DU Li-jie,QI Zhi-chong,HAN Xiao-liang,et al. Prediction Method for the Boreability and Performance of Hard Rock TBM Based on Boring Data on Site[J]. Journal of China Coal Society,2015,40(6):1284-1289.(in Chinese))
[16] LIU Z B, LI L, FANG X L, et al. Hard-rock Tunnel Lithology Prediction with TBM Construction Big Data Using a Global-attention-mechanism-based LSTM Network[J]. Automation in Construction, 2021, 125: 103647.
[17] ZHANG Q L, LIU Z Y, TAN J R. Prediction of Geological Conditions for a Tunnel Boring Machine Using Big Operational Data[J]. Automation in Construction, 2019, 100: 73-83.
[18] LIU Q S, WANG X Y, HUANG X, et al. Prediction Model of Rock Mass Class Using Classification and Regression Tree Integrated AdaBoost Algorithm Based on TBM Driving Data[J]. Tunnelling and Underground Space Technology, 2020, 106: 103595.
[19] 刘 强, 李夕兵, 梁伟章. 岩体质量分类的PCA-RF模型及应用[J]. 黄金科学技术, 2018, 26(1): 49-55.(LIU Qiang, LI Xi-bing, LIANG Wei-zhang. PCA-RF Model for the Classification of Rock Mass Quality and Its Application[J]. Gold Science and Technology, 2018, 26(1): 49-55.(in Chinese))
[20] 张志豪,陈 楠,祝 波,等.基于随机森林模型的武汉市城区大气PM2.5来源解析[J]. 环境科学,2022,43(3):1151-1158.(ZHANG Zhi-hao, CHEN Nan, ZHU Bo,et al.Source Analysis of Ambient PM2.5 in Wuhan City Based on Random Forest Model[J]. Environmental Science, 2022, 43(3): 1151-1158.(in Chinese))
[21] HAO W W. Classification of Sport Actions Using Principal Component Analysis and Random Forest Based on Three-dimensional Data[J]. Displays, 2022, 72: 102135.
[22] 聂 鹏,谌 鑫.基于主元分析和BP神经网络对刀具VB值预测[J].北京航空航天大学学报,2011,37(3):364-367,373.(NIE Peng, CHEN Xin. Prediction of Tool VB Value Based on PCA and BP Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 364-367, 373.(in Chinese))
[23] HE F, ZHANG L Y. Prediction Model of End-point Phosphorus Content in BOF Steelmaking Process Based on PCA and BP Neural Network[J]. Journal of Process Control, 2018, 66: 51-58.
[24] KIM D, PHAM K, OH J Y, et al. Classification of Surface Settlement Levels Induced by TBM Driving in Urban Areas Using Random Forest with Data-driven Feature Selection[J]. Automation in Construction, 2022, 135: 104109.
[25] WANG F E, WANG Y X, ZHANG K, et al. Spatial Heterogeneity Modeling of Water Quality Based on Random Forest Regression and Model Interpretation[J]. Environmental Research, 2021, 202: 111660.

基金

国家自然科学基金重点项目(51679089);河南省学科创新引智基地项目“智慧水利”(GXJD004)

PDF(6755 KB)

Accesses

Citation

Detail

段落导航
相关文章

/