鉴于目前半对数模型难以较好地描述大应变软土的非线性压缩和渗透关系的现状,引入适用于软土大应变的双对数压缩渗透模型,建立了考虑非达西渗流的饱和软土地基一维大应变固结方程,并给出了有限差分数值解,通过与室内试验和解析解对比,验证了解答的可靠性。在此基础上,分析了渗流参数、双对数压缩和渗流非线性关系参数和外荷载对固结性状的影响。结果表明:压缩指数Ic一定时,渗透参数越大,土层固结越慢;渗透参数一定时,压缩指数Ic越大,土层固结越慢; 外荷载qu越大,土层的沉降量就越大,超静孔隙水压力消散越快,土层的固结速率也越快;最后,对大、小应变固结理论下差分解对比分析,发现土体发生较大应变时,小应变固结理论将不再适用,此时应采用大应变固结理论开展计算。
Abstract
Given the limitations of semi-logarithmic model in describing the nonlinear compression and permeability relationship of large-strain soft soil, we present a bilogarithmic compression and permeability model specifically designed for such conditions. Furthermore, we established a one-dimensional large-strain consolidation equation for saturated soft soil foundation, taking into account non-Darcy flow, and provided a finite difference numerical solution. Through a comparison with indoor testing and analytical solutions, we verified the reliability of this solution. On this basis, we analyzed the effects of seepage parameters, bilogarithmic compression and nonlinear seepage parameters as well as external loads on consolidation behavior. Results indicate that, when the compression index (Ic) remains constant, greater permeability parameters lead to slower soil consolidation. Similarly, when the permeability parameter is constant, a larger compression index results in slower soil consolidation. Additionally, higher external loads (qu) correspond to greater settlement of the soil layer, faster dissipation of excess pore water pressure, and accelerated consolidation rate. To conclude, a differential analysis of large-strain consolidation theory versus small-strain consolidation theory reveals the inapplicability of the latter in the presence of significant soil strain. Instead, the large-strain consolidation theory should be employed for accurate calculations.
关键词
软土 /
双对数模型 /
大应变固结 /
非达西渗流 /
有限差分法
Key words
soft soil /
bilogarithmic model /
large-strain consolidation /
Non-Darcy flow /
finite difference method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MESRI G, ROKHSAR A. Theory of Consolidation for Clays[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(8): 889-904.
[2] WEBER W G Jr. Performance of Embankments Constructed over Peat[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(1): 53-76.
[3] CARGILL K W. Prediction of Consolidation of very Soft Soil[J]. Journal of Geotechnical Engineering, 1984, 110(6): 775-795.
[4] HANSBO S. Consolidation of Clay, with Special Reference to Influence of Vertical Sand Drains[D]. Stockholm: Swedish Geotechnical Institute, 1960.
[5] SWARTZENDRUBER D. Modification of Darcy’s Law for the Flow of Water in Soils[J]. Soil Science, 1962, 93(1): 22-29.
[6] SLEPICKA F. Contribution to the Solution of the Filtration Law[C]//Proceedings of International Union of Geodesy and Geophysics, Commission of Subterranean Waters. Finland: International Union of Geodesy and Geophysics. July 25-August 6,1960: 245-258.
[7] MILLER R J, LOW PF. Threshold Gradient for Water Flow in Clay Systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609.
[8] 谢海澜, 武 强, 赵增敏, 等. 考虑非达西流的弱透水层固结计算[J]. 岩土力学, 2007, 28(5): 1061-1065.(XIE Hai-lan, WU Qiang, ZHAO Zeng-min,et al. Consolidation Computation of Aquitard Considering Non-Darcy Flow[J]. Rock and Soil Mechanics, 2007, 28(5): 1061-1065.(in Chinese))
[9] BUTTERFIELD R. A Natural Compression Law for Soils (An Advance on e-Log p’)[J]. Géotechnique, 1979, 29(4): 469-480.
[10] 谢康和, 齐 添, 胡安峰, 等. 基于GDS的黏土非线性渗透特性试验研究[J]. 岩土力学, 2008, 29(2): 420-424.(XIE Kang-he, QI Tian, HU An-feng, et al. Experimental Study on Nonlinear Permeability Characteristics of Xiaoshan Clay[J]. Rock and Soil Mechanics, 2008, 29(2): 420-424.(in Chinese))
[11] 李传勋, 仇 超. 高压缩性软土一维非线性大应变固结解析解[J]. 岩石力学与工程学报, 2021, 40(11): 2344-2356.(LI Chuan-xun, QIU Chao. An Analytical Solution for One-dimensional Nonlinear Large-strain Consolidation of Soft Clay with High Compressibility[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2344-2356.(in Chinese))
[12] ZONG Meng-fan, TIAN Yi, LIANG Rong-zhu, et al. One-dimensional Nonlinear Consolidation Analysis of Soil with Continuous Drainage Boundary[J]. Journal of Central South University, 2022, 29(1): 270-281.
[13] 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009.(LI Chuan-xun, XIE Kang-he. Large-strain Consolidation of Soft Clay with Non-Darcian Flow by Considering Time-dependent Load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009.(in Chinese))
[14] 李传勋, 王昌建, 王 素, 董兴泉.. 考虑非达西渗流的结构性软土非线性固结分析[J]. 江苏大学学报(自然科学版), 2017, 38(4): 472-478.(LI Chuan-xun, WANG Chang-jian, WANG Su,et al. Analysis on Nonlinear Consolidation of Structural Soft Soil by Considering Non-Darcian Flow[J]. Journal of Jiangsu University (Natural Science Edition), 2017, 38(4): 472-478.(in Chinese))
[15] 李传勋,徐 超,谢康和.考虑非达西渗流和应力历史的土体非线性固结研究[J].岩土力学,2017,38(1):91-100.(LI Chuan-xun, XU Chao, XIE Kang-he. Nonlinear Consolidation of Clayed Soil Considering Non-Darcy Flow and Stress History[J]. Rock and Soil Mechanics, 2017, 38(1): 91-100.(in Chinese))
[16] XIE K H, LEO C J. Analytical Solutions of One-dimensional Large Strain Consolidation of Saturated and Homogeneous Clays[J]. Computers and Geotechnics, 2004, 31(4): 301-314.
[17] GIBSON R E, ENGLAND G L, HUSSEY M J L. The Theory of One-dimensional Consolidation of Saturated Clays[J]. Géotechnique, 1967, 17(3): 261-273.
[18] 张 明. 深圳前湾吹填淤泥固结性状研究[D]. 北京: 中国铁道科学研究院, 2010.(ZHANG Ming. Consolidation Behaviors of Dredged Fill in Qianwan Area of Shenzhen[D]. Beijing: China Academy of Railway Sciences, 2010.(in Chinese))
[19] 刘忠玉, 黄家涛, 夏洋洋, 等. 基于非牛顿指数渗流的饱和黏土一维流变固结分析[J]. 土木工程与管理学报, 2020, 37(3): 1-7.(LIU Zhong-yu, HUANG Jia-tao, XIA Yang-yang,et al. One-dimensional Rheological Consolidation Analysis of Saturated Clay with Non-Darcian Flow Based on Non-Newtonian Index[J]. Journal of Civil Engineering and Management, 2020, 37(3): 1-7.(in Chinese))
[20] 仇 超, 李传勋, 李红军. 单级等速加载下高压缩性软土非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.(QIU Chao, LI Chuan-xun, LI Hong-jun. Analytical Solutions for One-dimensional Nonlinear Large-strain Consolidation of High Compressible Soil under a Ramp Loading[J]. Rock and Soil Mechanics, 2021, 42(8): 2195-2206.(in Chinese))
[21] 谢康和,郑 辉,LEO C J.软黏土一维非线性大应变固结解析理论[J].岩土工程学报,2002,24(6):680-684.(XIE Kang-he, ZHENG Hui, LEO C J. An Analytical Theory for 1-D Nonlinear Large Strain Consolidation of Soft Clay[J]. Chinese Journal of Geotechnical Engineering, 2002,24(6): 680-684.(in Chinese))
[22] PU H, SONG D, FOX P J. Benchmark Problem for Large Strain Self-weight Consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5): 1-3.
[23] 曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286-1292.(ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan. A Law of Change in Permeability Coefficient during Compression of Remolded Clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286-1292.(in Chinese))
[24] 金丹丹,肖金阳,李传勋.考虑非达西渗流的天然结构性软土大应变非线性固结[J].防灾减灾工程学报,2019,39(6):888-897.(JIN Dan-dan,XIAO Jin-yang,LI Chuan-xun. Analysis on Nonlinear Large-strain Consolidation of Structured Soft Clay by Considering Non-Darcy Flow[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(6):888-897.(in Chinese))
基金
国家自然科学基金项目(51879104);湖南省研究生科研创新项目(CX20220408)