滇中引水工程输水建筑物多采用隧洞,占比高达92%,线路多次穿越区域性活动断裂带等地质条件复杂的地层,工程建设及安全运行均受到严重威胁。结合滇中引水工程隧洞穿越活动断裂带的工程设计案例,从建筑物结构型式选择以及结构对断裂带蠕滑变形及黏滑变形的适应性进行了三维仿真分析,并提出了工程运行期合理的检修年限。研究结果表明:采用短衬砌和宽变形缝结构形式可有效减小区域性活动断裂带位移产生的结构应力,大大延长了衬砌结构的使用寿命。研究结论为穿越活断裂隧洞的抗错断设计提供参考。
Abstract
Tunnels account for 92% of the water conveyance structures in Central Yunnan Water Diversion Project. The tunnel line confronts with regional active fault zone and strata with complex geological conditions for multiple times, posing threats to the construction and safe operation of the project. The engineering design case of a tunnel of the Central Yunnan Water Diversion Project crossing active fault zone is taken as research background. The structural type of the tunnel is selected, and the adaptability of tunnel structure to creep deformation and stick-slip deformation of fault zone is investigated via three-dimensional simulation, and the reasonable age of service before overhaul in the operation period of the project is put forward. Results manifest that short lining and wide deformation joint can effectively reduce the structural stress caused by the displacement of regional active fault zone, and prolong the service life of the lining structure. The research findings offer reference for the anti-fault design of tunnels.
关键词
区域性活动断裂带 /
隧洞抗错断措施 /
结构适应性分析 /
三维仿真分析 /
滇中引水工程
Key words
regional active fault zone /
anti-fault measures of tunnel /
structural adaptability analysis /
three-dimensional simulation analysis /
Central Yunnan Water Diversion Project
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁秀丽,张雨霆,张传健,等. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治,2019,1(1):8-23.
[2] 刘东燕,徐锡伟. 活动断层地震灾害预测方法与应用[M].北京:科学出版社,2011.
[3] CAULFIELD R J, KIEFFER D S, TSZTOO D F, et al. Seismic Design Measures for the Retrofit of the Claremont Tunnel[C]//Rapid Excavation and Tunneling Conference (RETC) Proceedings. Colorado, USA: Society for Mining, Metallurgy, and Exploration, Inc (SME). Seattle, June 2005: 1-11.
[4] SHAHIDI A R, VAFAEIAN M. Analysis of Longitudinal Profile of the Tunnels in the Active Faulted Zone and Designing the Flexible Lining (for Koohrang-III Tunnel)[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221.
[5] 杨 禧. 掌鸠河引水供水工程过普渡河大断裂措施研究与设计[J]. 水力发电,2011,37(10):42-43.
[6] WANG W L, WANG T T, SU J J, et al. Assessment of Damage Inmountain Tunnels Due to the Taiwan Chi-Chi Earthquake[J]. Tunnellingand Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(3): 133-150.
[7] 周光新,盛 谦,张传健,等. 穿越走滑断层铰接隧洞抗错断设计参数作用机制研究[J]. 岩石力学与工程学报,2022,41(5):941-953.
[8] 亚丽娜,盛 谦,崔 臻,等. 基于三维离散-连续耦合方法的跨活动断裂隧洞错断破坏机制研究[J]. 岩土工程学报,2018,40(增刊2):240-245.
[9] 朱 勇,周 辉,张传庆,等.跨活断层隧道断错灾变与防控技术研究现状和展望[J]. 岩土工程学报,2012,41(增刊1):2711-2724.
[10]PARK J, LEE Y, SONG J, et al. A Constitutive Model for Shear Behavior of Rock Joints Based on Three-dimensional Quantification of Joint Roughness[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1513-1537.
[11]刘国钊,乔亚飞,何满潮,等. 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学,2020, 41(3):923-932.
[12]SL 297—2002,水工隧洞设计规范[S].北京:中国水利水电出版社,2003.
[13]SL 191—2008,工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.
基金
云南省重点科技专项(202002AF080003)