过活动断裂隧洞抗错断适应性结构响应分析

崔臻, 张延杰, 周光新, 谢静, 王义深, 杨景浩

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (12) : 90-96.

PDF(2315 KB)
PDF(2315 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (12) : 90-96. DOI: 10.11988/ckyyb.20221045
隧洞过活动断层的适应性

过活动断裂隧洞抗错断适应性结构响应分析

  • 崔臻1,2,3, 张延杰1, 周光新2,3, 谢静1, 王义深1, 杨景浩1
作者信息 +

Mechanical Behavior of Tunnel Structure Passing Through an Active Fault and Subjected to Fault Rupture

  • CUI Zhen1,2,3, ZHANG Yan-jie1, ZHOU Guang-xin2,3, XIE Jing1, WANG Yi-shen1, YANG Jing-hao1
Author information +
文章历史 +

摘要

输水隧洞作为长距离跨流域调水工程的关键控制性工程为缓解经济布局与水资源分布之间的区域矛盾发挥着巨大作用。而我国西南高烈度地区地质构造复杂,活动断裂分布密集,导致输水隧洞工程不可避免地需要穿越多条活动断裂带建设。针对滇中引水工程香炉山隧洞过活动断裂带,开展隧道适应性结构在断层错动条件下的影响校核。以龙蟠—乔后断层F10-1为代表,基于隧洞关键部位的位移、相对变形、最大主应力和纵向等效内力等指标,评估活动断层对香炉山隧洞抗错断适应性结构的影响,并基于数值计算验证其在减小衬砌内力与变形方面的作用。结果表明受走滑为主的断层运动影响,隧洞的一侧边墙表现为受拉状态,拉应力较小,约为5 MPa;铰接缝的最大法向变形与切向变形均位于断层带中央节段之间;铰接设计这一适应性结构的存在有效改善了衬砌在错动条件下的受力状态。研究成果可以直接应用于穿越活断层输水隧洞的工程设计与施工,为相关工程隧洞建设提供有利支撑。

Abstract

As the key controlling project of long-distance cross-basin water transfer project, water conveyance tunnel plays a significant role in alleviating the regional contradiction between economic layout and water resources distribution. In high seismic intensity areas of southwest China where geological structure is complex and active faults are densely distributed, water conveyance tunnel project inevitably crosses multiple active fault zones. The Xianglushan tunnel of Central Yunnan Water Diversion Project, which crosses the Longpan-Qiaohou fault F10-1, is taken as the research object. The influence of active fault on the anti-dislocation adaptability of the tunnel is evaluated based on the displacement, relative deformation, maximum principal stress, and longitudinal equivalent internal force and other factors of key parts of the tunnel. The effect on reducing the internal force and deformation of lining is also verified via numerical calculation. Results unveil that affected by fault movement dominated by strike-slip, one sidewall of the tunnel is in tension, with a small tensile stress around 5 MPa. The maximum normal and tangential deformation of hinge joint are located in the central section of the fault zone. The adaptive hinge design effectively improves the stress state of lining under dislocation condition. The research findings can be directly applied to the engineering design and construction of water conveyance tunnels crossing active faults, and also provide favorable support for the construction of related engineering tunnels.

关键词

输水隧洞 / 活动断裂 / 抗错断设计 / 走滑断层 / 校核

Key words

water conveyance tunnel / active fault / anti-dislocation design / strike slip fault / checking

引用本文

导出引用
崔臻, 张延杰, 周光新, 谢静, 王义深, 杨景浩. 过活动断裂隧洞抗错断适应性结构响应分析[J]. 长江科学院院报. 2022, 39(12): 90-96 https://doi.org/10.11988/ckyyb.20221045
CUI Zhen, ZHANG Yan-jie, ZHOU Guang-xin, XIE Jing, WANG Yi-shen, YANG Jing-hao. Mechanical Behavior of Tunnel Structure Passing Through an Active Fault and Subjected to Fault Rupture[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(12): 90-96 https://doi.org/10.11988/ckyyb.20221045
中图分类号: TV554   

参考文献

[1] 皇 民, 刘马群, 王安华, 等. 隧道地震破坏的主要形式及影响因素分析[J]. 交通科技与经济, 2010, 12(1): 66-68.
[2] CAI Q P, PENG J M, NG C W W,et al. Centrifuge and Numerical Modelling of Tunnel Intersected by Normal Fault Rupture in Sand[J]. Computers and Geotechnics, 2019, 111: 137-146.
[3] BURRIDGE P B, SCOTT R F, HALL J F. Centrifuge Studyof Faulting Effects on Tunnel[J]. Journal of Geotechnical Engineering, 1989, 115(7): 949-967.
[4] 刘学增, 王煦霖, 林亮伦. 45°倾角正断层粘滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50.
[5] 刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报(自然科学版), 2014, 47(2): 121-128.
[6] 刘学增, 林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12): 2523-2530.
[7] CHERMAHINI A G, TAHGHIGHI H. Numerical Finite Element Analysisof Underground Tunnel Crossing an Active Reverse Fault: A Case Study on the Sabzkouh Segmental Tunnel[J]. Geomechanics and Geoengineering, 2019, 14(3): 155-166.
[8] 焦鹏飞, 来弘鹏. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报, 2019, 52(2): 106-117.
[9] JEON S, KIM J, SEO Y,et al. Effect of a Fault and Weak Plane on the Stability of a Tunnel in Rock: A Scaled Model Test and Numerical Analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663.
[10]KIYOMIYA O. Earthquake-resistant Design Features of Immersed Tunnels in Japan[J]. Tunnelling and Underground Space Technology, 1995, 10(4): 463-475.
[11]梁文灏, 李国良. 乌鞘岭特长隧道方案设计[J]. 现代隧道技术, 2004(2): 1-7.
[12]高丁予. 高铁隧道工程穿越汶川地震断裂带抗错动机理与设计参数研究[D]. 北京: 北京交通大学, 2015.
[13]周兴涛. 活动断裂区隧洞围岩-衬砌体系力学响应特征与破坏机理研究[D]. 北京: 中国科学院大学, 2018.
[14]张 煜, 断层蠕滑错动作用下隧道衬砌损伤开裂研究及柔性连接抗错断措施[D].成都:西南交通大学,2016.
[15]JALALI M. Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method Case Study: Karaj Water Conveyance Tunnel[J]. International Journal of Mining and Geo-Engineering, 2018, 52(1): 87-94.
[16]CAULFIELD R J, KIEFFER D S, TSZTOO D F, et al. Seismic Design Measures for the Retrofit of the Claremont Tunnel, in Jacobs Associates[C]//Proceedings of Rapid Excavation and Tunneling Conference (RETC) Proceedings. Seattle, June, 2005: 1128-1138.
[17]SHAHIDI A R, VAFAEIAN M. Analysis of Longitudinal Profileof the Tunnels in the Active Faulted Zone and Designing the Flexible Lining (for Koohrang-III tunnel)[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221.
[18]陈 熹. 活动断层错动下跨断层隧道动力响应及破坏机理研究[D]. 成都: 西南交通大学, 2017.
[19]颜天佑, 崔 臻, 张勇慧,等. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. 岩土力学, 2018, 39(增刊1): 378-386.
[20]周光新, 崔 臻, 盛 谦,等. 活动断裂错动位移模式对隧洞变形与内力的影响研究. 防灾减灾工程学报,2021, 41(6): 1323-1331.

基金

云南省重大科技专项计划项目(202102AF080001);国家自然科学基金资助项目(52079133);中国科学院青年创新促进会项目(2019323)

PDF(2315 KB)

Accesses

Citation

Detail

段落导航
相关文章

/