受梯级枢纽运行影响河段,洪枯季航道的水深条件可能发生逆转,航道工程的设计最小通航流量将出现显著变化。根据黔柳江来流特点、大藤峡水利枢纽调度运行规则、红花水利枢纽调峰特征和柳江航道工程对枯水位的影响情况,确定了红花水利枢纽下游近坝段航道的设计最小通航流量。结果表明:受大藤峡水利枢纽运行影响,柳江枯水控制时段将发生显著变化,航道设计最小通航流量具备显著提高的条件;考虑到柳江航道长距离疏挖对红花水利枢纽坝下低水位影响较大和红花水利枢纽日调峰明显,取红花水利枢纽上游柳州水文站6—8月份保证率98%的流量作为下游近坝段航道最小通航控制流量是合适的。研究成果对于受梯级枢纽运行影响的航道设计最小通航流量分析计算具有重要参考意义。
Abstract
The water depth condition of navigation channel affected by the operation of cascade hydropower stations could experience a reverse between flood season and dry season, significantly altering the minimum design navigable discharge of the waterway. The minimum design navigable discharge of the waterway downstream of Honghua dam was determined in consideration of the inflow characteristics of the Qianjiang and Liujiang Rivers, the dispatch operation rules of the Datangxia Reservoir, the peak regulation features of the Honghua hydropower station, as well as the impact of Liujiang River waterway project on low water level. Results indicated that the control period for low water level of Liujiang River would undergo significant changes due to the impoundment of Datengxia Reservoir, and the minimum design navigable discharge of waterway had the potential to increase remarkably. The extensive dredging of Liujiang River navigation channel substantially impacted the low water level downstream of Honghua dam, and the daily peak regulation of Honghua hydropower station was significant. Consequently, it is suitable to adopt the discharge with a 98% guarantee rate at Liuzhou hydrological station in the upstream of Honghua dam from June to August as the minimum navigable control discharge for the downstream waterway. The findings provide valuable information for the analysis and computation of the minimum design navigable discharge of waterways affected by cascade hydropower stations.
关键词
航道 /
通航流量 /
变动回水区 /
日调节 /
大藤峡水库
Key words
navigation channel /
navigable discharge /
fluctuating backwater reach /
daily regulation /
Datengxia reservior
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 明, 冯小香, 彭 伟, 等. 西江界首至肇庆河段航道设计最低通航水位研究[J]. 水运工程, 2018(4): 104-109.
[2] 冯小香, 张 明. 三峡蓄水后长江中游设计最低通航水位预报[J]. 水道港口, 2017, 38(1): 49-53.
[3] 王秀英, 李义天. 长江中下游设计最低通航水位变化分析[J]. 水运工程, 2004(11): 70-74.
[4] 李家世, 刘晓帆, 周玉洁, 等. 山区河流航道设计最低通航水位推求方法研究[J]. 中国水运(下半月), 2021, 21(6): 88-90.
[5] 周作付, 何健华, 邓年生, 等. 受人工采砂影响明显的河段基本站设计最低通航水位计算的探讨[J]. 水运工程, 2003(8): 33-36.
[6] GB 50139—2014,内河通航标准[S]. 北京: 中国计划出版社, 2015.
[7] 李俊娜. 西江梧州水文站设计最低通航水位探讨[J]. 水运工程, 2020(10): 138-142.
[8] 王 军, 王义安, 于广年. 松花江大顶子山航电枢纽坝下冲刷深度及水位降落研究[J]. 水道港口, 2011, 32(3): 197-201.
[9] 李家世, 刘晓帆. 梯级水库建设对岷江下游航道通航流量的影响[J]. 水运工程, 2021(6): 164-170, 193.
[10]刘 勇, 张 毅. 满足通航标准条件下电站最小下泄流量计算与分析[J]. 水运工程, 2015(1): 134-138, 144.
[11]谢玉杰,余 祥,李家世,等.嘉陵江亭子口枢纽变动回水区通航流量及保证率分析[J].水运工程,2021(1): 174-177, 201.[12]洪 毅, 王义安, 于广年. 大顶子山航电枢纽变动回水区航道整治试验研究[J]. 水道港口, 2007, 28(4): 250-256.
[13]张 明, 冯小香, 刘 哲, 等. 三峡蓄水后洞庭湖水沙环境变化对湖区航道的影响[J]. 水科学进展, 2015, 26(3): 423-431.
[14]JTS/T 103-2—2021,航道工程基本术语标准[S]. 北京: 人民交通出版社, 2021.
[15]刘艳丽, 张建云, 王国庆, 等. 环境变化对流域水文水资源的影响评估及不确定性研究进展[J]. 气候变化研究进展, 2015, 11(2): 102-110.
[16]王国庆, 张建云, 管晓祥, 等. 中国主要江河径流变化成因定量分析[J]. 水科学进展, 2020, 31(3): 313-323.
[17]张 明, 冯小香, 郝品正. 多因素作用下的西江梧州河段枯水水位下落[J]. 泥沙研究, 2013(5): 69-74.
[18]杨首龙, 林 琳, 吴时强, 等. 水动力与人为挖砂共同作用下水口水电站坝下水位变化规律[J]. 水力发电学报, 2013, 32(4): 137-142.
[19]黄建成,黄雪颖,周银军,等.汉江兴隆水利枢纽下游近坝段水位下降成因及防治对策[J].长江科学院院报,2022,39(7):13-16,22.
基金
国家自然科学基金面上项目(51979132);交通运输行业重点科技项目(2021-MS6-156);中央级公益性科研院所基本科研业务费专项(TKS20210305)