PDF(6836 KB)
PDF(6836 KB)
PDF(6836 KB)
堤坝漫溃机理、模型及溃决洪水模拟技术与应用
Embankment Breach Due to Overflowing: Mechanism, Models, Flood Simulation Technologies, and Their Applications
为提升堤坝溃决险情处置和溃决灾害防御能力,多年来长江科学院河流研究所采用物理模型试验、水槽试验、理论分析、数值模拟等方法研究了堤坝漫溢溃决的机理、模型与模拟技术。其主要成果包括:揭示了堤坝漫溢溃决机理,解析了“溯源陡坎冲刷”在堤坝溃决过程中的作用,提出了溯源陡坎冲刷模式和堤坝漫溢溃决模式;基于物理机制,研发了溯源陡坎冲刷二维数学模型和堤坝漫溢溃决数学模型;发展了适应溃坝水流急变特征的一、二、三维溃坝洪水运动模拟技术及地形处理方法,并初步探索了溃坝水流的三维流场与动压特性;总结评述了相关领域的研究进展。研究成果成功应用于唐家山、白格等历次堰塞湖溃决险情的应急处置和决策制定,并为今后堤坝(含堰塞坝)溃决险情的科学应对提供了技术参考和经验借鉴。
Over the years, researchers in the River Research Department of the Changjiang River Scientific Research Institute has conducted extensive studies on the mechanism, models, and simulation technologies of embankment breaches due to overflowing. These efforts were aimed at enhancing the ability to respond to embankment breach emergencies and to defend associated disasters. Through the use of physical model tests, flume tests, theoretical analysis, numerical simulation, and other methods, the department has made significant contributions to the field. Specifically, we have uncovered the mechanism of embankment breaches due to overflowing, analyzed the role of “headcut erosion” in the breaching process, and introduced patterns of headcut erosion and phases of embankment breaching due to overflowing. Additionally, we have developed a two-dimensional mathematical model of headcut erosion and a mathematical model of embankment breaching based on the physical mechanism. Furthermore, we have created one-, two-, and three-dimensional flood simulation technologies that are adapted to the characteristics of dam-breaking flow, along with a terrain processing method, and have preliminarily explored the three-dimensional flow field and hydrodynamic pressure characteristics of dam-breaking flow. Last, we made a review on the research progress in related fields and the achievements published in scientific journals. The accomplishments of the department have already proven to be highly effective in emergency response and decision-making, specifically during the Tangjiashan and Baige barrier lake breach emergencies. These achievements provide technical reference and experience for addressing embankment breach (including barrier lake burst) dangers in the future.
embankment / barrier lake / embankment breaching mechanism / flood evolution / emergency response
| [1] |
|
| [2] |
|
| [3] |
张建云, 李云, 宣国祥, 等. 不同粘性均质土坝漫顶溃决实体试验研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1881-1886.
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
黄金池. 堰塞坝漫顶溃口流量变化过程的数值模拟[J]. 水利学报, 2008, 39(10): 1235-1240.
|
| [11] |
|
| [12] |
钟启明, 陈生水, 邓曌. 堰塞坝漫顶溃决机理与溃坝过程模拟[J]. 中国科学: 技术科学, 2018, 48(9): 959-968.
|
| [13] |
陈祖煜, 陈生水, 王琳, 等. 金沙江上游“11·3”白格堰塞湖溃决洪水反演分析[J]. 中国科学: 技术科学, 2020, 50(6): 763-774.
|
| [14] |
|
| [15] |
|
| [16] |
王光谦, 王永强, 刘磊, 等. 堰塞坝及其溃决模拟研究评述[J]. 人民黄河, 2015, 37(9): 1-7.
|
| [17] |
朱勇辉, 廖鸿志, 吴中如. 土坝溃决模型及其发展[J]. 水力发电学报, 2003, 22(2): 31-38.
|
| [18] |
谢亚军, 朱勇辉, 国小龙. 土坝溃决研究进展及存在问题[J]. 长江科学院院报, 2013, 30(4): 29-33.
|
| [19] |
国小龙, 朱勇辉, 范北林, 等. “陡坎”冲刷模拟研究与进展[J]. 水力发电学报, 2014, 33(1): 73-78.
|
| [20] |
周建银, 姚仕明, 王敏, 等. 土石坝漫顶溃决及洪水演进研究进展[J]. 水科学进展, 2020, 31(2): 287-301.
|
| [21] |
张昕健, 渠庚, 范北林, 等. 溃堤洪水与堤后冲刷研究综述及展望[J]. 长江科学院院报, 2019, 36(4): 9-12, 38.
|
| [22] |
朱勇辉, 范北林, 卢金友, 等. 唐家山堰塞湖溃坝洪水分析及泄流冲刷模拟[J]. 人民长江, 2008, 39(22): 79-82.
|
| [23] |
张细兵, 卢金友, 范北林, 等. 唐家山堰塞湖溃坝洪水演进及下泄过程复演[J]. 人民长江, 2008, 39(22): 76-78.
|
| [24] |
朱勇辉, 张细兵, 渠庚. 唐家山堰塞湖溃坝洪水计算及湖水下泄复演验证报告[R]. 武汉: 长江水利委员会长江科学院, 2008.
|
| [25] |
王敏, 卢金友, 姚仕明, 等. 金沙江白格堰塞湖溃决洪水预报误差与改进[J]. 人民长江, 2019, 50(3): 34-39.
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
朱勇辉, 谢亚军, 国小龙. 均质土石坝漫溃过程中“陡坎”冲刷机理与模拟研究[R]. 武汉: 长江科学院, 2014.
|
| [31] |
朱勇辉. 均质堤坝漫溃过程模拟研究[R]. 北京: 清华大学, 2011.
|
| [32] |
周建银, 王敏, 赵瑾琼, 等. 一种河道断面地形重构方法: CN111735430B[P]. 2021-11-26.
|
| [33] |
杨小亭. 二维溃坝水波MAC方法数值模拟[J]. 武汉水利电力大学学报, 1997(2): 54-58.
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
胡德超. 溃坝水流与河床相互作用的三维数值模拟研究[R]. 北京: 清华大学, 2011.
|
| [40] |
周建银, 朱勇辉, 陈栋, 等. 2018年金沙江白格、雅鲁藏布江加拉堰塞湖溃决及洪水演进计算分析报告[R]. 武汉: 长江水利委员会长江科学院, 2021.
|
/
| 〈 |
|
〉 |